The second in the top row is this:
42.4-1.5(TIMES)3.1
42.4-46.5
-4.1
Substitute
, so that
![\dfrac{\mathrm dv}{\mathrm dx}=1-\dfrac{\mathrm dy}{\mathrm dx}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20dv%7D%7B%5Cmathrm%20dx%7D%3D1-%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D)
Then the resulting ODE in
is separable, with
![1-\dfrac{\mathrm dv}{\mathrm dx}=v^2\implies\dfrac{\mathrm dv}{1-v^2}=\mathrm dx](https://tex.z-dn.net/?f=1-%5Cdfrac%7B%5Cmathrm%20dv%7D%7B%5Cmathrm%20dx%7D%3Dv%5E2%5Cimplies%5Cdfrac%7B%5Cmathrm%20dv%7D%7B1-v%5E2%7D%3D%5Cmathrm%20dx)
On the left, we can split into partial fractions:
![\dfrac12\left(\dfrac1{1-v}+\dfrac1{1+v}\right)\mathrm dv=\mathrm dx](https://tex.z-dn.net/?f=%5Cdfrac12%5Cleft%28%5Cdfrac1%7B1-v%7D%2B%5Cdfrac1%7B1%2Bv%7D%5Cright%29%5Cmathrm%20dv%3D%5Cmathrm%20dx)
Integrating both sides gives
![\dfrac{\ln|1-v|+\ln|1+v|}2=x+C](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cln%7C1-v%7C%2B%5Cln%7C1%2Bv%7C%7D2%3Dx%2BC)
![\dfrac12\ln|1-v^2|=x+C](https://tex.z-dn.net/?f=%5Cdfrac12%5Cln%7C1-v%5E2%7C%3Dx%2BC)
![1-v^2=e^{2x+C}](https://tex.z-dn.net/?f=1-v%5E2%3De%5E%7B2x%2BC%7D)
![v=\pm\sqrt{1-Ce^{2x}}](https://tex.z-dn.net/?f=v%3D%5Cpm%5Csqrt%7B1-Ce%5E%7B2x%7D%7D)
Now solve for
:
![x-y+1=\pm\sqrt{1-Ce^{2x}}](https://tex.z-dn.net/?f=x-y%2B1%3D%5Cpm%5Csqrt%7B1-Ce%5E%7B2x%7D%7D)
![\boxed{y=x+1\pm\sqrt{1-Ce^{2x}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3Dx%2B1%5Cpm%5Csqrt%7B1-Ce%5E%7B2x%7D%7D%7D)
Answer:
<h2>
x = 16 degrees</h2>
Step-by-step explanation:
1 and 3 are <u>vertical angles</u> so m∠1 = m∠3
(4x - 2)° = 62°
4x - 2 = 62
4x = 64
x = 16
Congruent because both angles are the same
Answer:
the answer is c
Step-by-step explanation:
just is.