Answer:
R3 <= 0.083
Step-by-step explanation:
f(x)=xlnx,
The derivatives are as follows:
f'(x)=1+lnx,
f"(x)=1/x,
f"'(x)=-1/x²
f^(4)(x)=2/x³
Simialrly;
f(1) = 0,
f'(1) = 1,
f"(1) = 1,
f"'(1) = -1,
f^(4)(1) = 2
As such;
T1 = f(1) + f'(1)(x-1)
T1 = 0+1(x-1)
T1 = x - 1
T2 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2
T2 = 0+1(x-1)+1(x-1)^2
T2 = x-1+(x²-2x+1)/2
T2 = x²/2 - 1/2
T3 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2+f"'(1)/6(x-1)^3
T3 = 0+1(x-1)+1/2(x-1)^2-1/6(x-1)^3
T3 = 1/6 (-x^3 + 6 x^2 - 3 x - 2)
Thus, T1(2) = 2 - 1
T1(2) = 1
T2 (2) = 2²/2 - 1/2
T2 (2) = 3/2
T2 (2) = 1.5
T3(2) = 1/6 (-2^3 + 6 *2^2 - 3 *2 - 2)
T3(2) = 4/3
T3(2) = 1.333
Since;
f(2) = 2 × ln(2)
f(2) = 2×0.693147 =
f(2) = 1.386294
Since;
f(2) >T3; it is significant to posit that T3 is an underestimate of f(2).
Then; we have, R3 <= | f^(4)(c)/(4!)(x-1)^4 |,
Since;
f^(4)(x)=2/x^3, we have, |f^(4)(c)| <= 2
Finally;
R3 <= |2/(4!)(2-1)^4|
R3 <= | 2 / 24× 1 |
R3 <= 1/12
R3 <= 0.083
C=5/9 (62-32)
c=(5/9)*30
c= 150/9
c=16.666....
so c=16.6
<span><span>
The correct answers are:</span><span>
(1) The vertical asymptote is x = 0
(2) The horizontal asymptote is y = 0
</span><span>
Explanation:</span><span>(1) To find the vertical asymptote, put the denominator of the rational function equals to zero.
Rational Function = g(x) = </span></span>

<span>
Denominator = x = 0
Hence the vertical asymptote is x = 0.
(2) To find the horizontal asymptote, check the power of x in numerator against the power of x in denominator as follows:
Given function = g(x) = </span>

<span>
We can write it as:
g(x) = </span>

<span>
If power of x in numerator is less than the power of x in denomenator, then the horizontal asymptote will be y=0.
If power of x in numerator is equal to the power of x in denomenator, then the horizontal asymptote will be y=(co-efficient in numerator)/(co-efficient in denomenator).
If power of x in numerator is greater than the power of x in denomenator, then there will be no horizontal asymptote.
In above case, 0 < 1, therefore, the horizontal asymptote is y = 0
</span>
Answer:
Step-by-step explanation:
Numerator
sin
x
cos
y
+
cos
x
sin
y
−
[
sin
x
cos
y
−
cos
x
sin
y
)
=
sin
x
cos
y
+
cos
x
sin
y
−
sin
x
cos
y
+
cos
x
sin
y
=
2
cos
x
sin
y
Denominator
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
cos
x
cos
y
−
sin
x
sin
y
+
cos
x
cos
y
+
sin
x
sin
y
=
2
cos
x
cos
y
---------------------------------------------------------------
left side can now be expressed as
2
cos
x
sin
y
2
cos
x
cos
y
=
2
cos
x
sin
y
2
cos
x
cos
y
=
sin
y
cos
y
and
sin
y
cos
y
=
tan
y
=
right side hence proved
Answer:
24
Step-by-step explanation:
Just subtract the first quartile form the third quartile.
third quartile - first quartile
32 - 8 = 24 IQR
FIRST quartile: 8
SECOND quartile: 20
THIRD quartile: 32
So the IQR is 24
Hope this helps :)