1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
10

What is the value of the expression (e+c-d)x dn when e=-6, n=2, c=6, and d=-1

Mathematics
1 answer:
saul85 [17]3 years ago
8 0

The value of the expression (e+c-d)x dn  is -2

The given expression is:

(e+c-d)x dn

Substitute e=-6, n=2, c=6, and d=-1 into (e + c - d)  x  dn

(e+c-d)x dn  =  [-6  + 6 -(-1)]  x  (-1)(2)

(e+c-d)x dn  =  (0  +  1)   x  (-2)

(e+c-d)x dn  =  1   x  (-2)

(e+c-d)x dn  =   -2

Learn more here: brainly.com/question/13961297

You might be interested in
A carton has a length of 2 2/3 feet, width of 1 1/8 feet, and height of 1 1/5 feet. What is the volume of the carton? (5 points)
pishuonlain [190]

Answer:

3 3/5

Step-by-step explanation:

6 0
2 years ago
The graph shows the number of hours per day spent on social media by a group of teenagers and the number of hours per day spent
umka21 [38]

Answer:

0.9 hours

0

the nature of line is pure liner

Step-by-step explanation:

The attached graph is the drawn graph of given data

i) A teenager would spend exercising in one day if they spent 0.25 hours on social media.

0.9 hours

According to the graph if you locate the 0.25 hour on x-axis and draw perpendicular the will intersect the line on the value of y-axis is = 0.9 hours

ii) if they spent 1.38 hours on social media the corresponding value of exercising per day is approx  0

iii)   Yes it has the best fit value of corresponding values between two.  which is also reasonable in the all cases.  the nature of line is pure liner.

3 0
4 years ago
Helppppppppppppppppppppppp
il63 [147K]

Answer:

slope-intercept form i honestly am not positive but that's what I would do sooooo


8 0
3 years ago
I came up the answer as 57. I will attach my note, can you check?
ololo11 [35]

BC=19

Explanation

Step 1

ABE

triangle ABE is rigth triangle, then let

\begin{gathered} Angle=60 \\ adjacentside=BE \\ opposit\text{ side(the one in front of the angle)= AB=}\frac{19\sqrt[]{6}}{4} \end{gathered}

so, we need a function that relates, angle, adjancent side and opposite side

\tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}}

replace

\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 60=\frac{AB}{\text{BE}} \\ \text{cross multiply} \\ \text{BE}\cdot\tan \text{ 60=AB} \\ \text{divide both sides by tan 60} \\ \frac{\text{BE}\cdot\tan\text{ 60}}{\tan\text{ 60}}=\frac{\text{AB}}{\tan\text{ 60}} \\ BE=\frac{\text{AB}}{\tan\text{ 60}} \\ \text{if AB=}\frac{19\sqrt[]{6}}{4} \\ BE=\frac{\frac{19\sqrt[]{6}}{4}}{\sqrt[]{3}} \\ BE=\frac{19\sqrt[]{6}}{4\sqrt[]{3}} \end{gathered}

Step 2

BED

again, we have a rigth triangle,then let

\begin{gathered} \text{Hypotenuse}=BD \\ \text{adjacent side= BE=6.71} \\ \text{angle}=\text{ 45} \end{gathered}

so, we need a function that relates; angle, hypotenuse and adjacent side

\cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}

replace.

\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 45=\frac{6.71}{\text{BD}} \\ BD=\frac{6.71}{\cos \text{ 45}} \\ BD=\frac{\frac{19\sqrt[]{6}}{4\sqrt[]{3}}}{\frac{\sqrt[]{2}}{2}} \\ BD=\frac{38\sqrt[]{6}}{4\sqrt[]{6}} \\ BD=\frac{38}{4} \end{gathered}

Step 3

finally BDE

let

angle=30

opposite side= BD

use sin function

\begin{gathered} \sin \theta=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{replace} \\ \sin \text{ 30=}\frac{BD}{BC} \\ BC\cdot\sin 30=BD \\ BC=\frac{BD}{\sin \text{ 30}} \\ BC=\frac{\frac{38}{4}}{\frac{1}{2}} \\ BC=\frac{76}{4}=19 \\ BC=19 \end{gathered}

so, the answer is 19

I hop

4 0
1 year ago
Find the least common multiple of the following polynomials: 5y^2-80 and y+4
algol [13]
5y^2 - 80 = 5(y^2-16) = 5(y - 4)(y + 4)

LCM of 5(y - 4)(y + 4) and (y + 4) is 5(y - 4)(y + 4) 

-----------------------------------------------------------------------
Answer: 5(y - 4)(y + 4) (Answer D)
-----------------------------------------------------------------------
3 0
3 years ago
Read 2 more answers
Other questions:
  • Can someone please help? Explain, thank you.
    8·2 answers
  • Help Please asap
    6·2 answers
  • 30 Points!!Need Help Please!!! Will give Brainliest!!!
    8·1 answer
  • Is 9/10 larger than 13/14
    12·1 answer
  • I need help someone plz help me
    11·2 answers
  • What is the correct answer?
    8·1 answer
  • (a^2-4)(9-b^2)+24ab
    14·1 answer
  • Find the value of y?​
    12·1 answer
  • More points for yall
    13·2 answers
  • Solve by using the quadratic formula. (If there is no solution, enter NO SOLUTION.)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!