Answer: provided in the explanation section
Explanation:
Given that:
Assume D(k) =║ true it is [1 : : : k] is valid sequence words or false otherwise
now the sub problem s[1 : : : k] is a valid sequence of words IFF s[1 : : : 1] is a valid sequence of words and s[ 1 + 1 : : : k] is valid word.
So, from here we have that D(k) is given by the following recorance relation:
D(k) = ║ false maximum (d[l]∧DICT(s[1 + 1 : : : k]) otherwise
Algorithm:
Valid sentence (s,k)
D [1 : : : k] ∦ array of boolean variable.
for a ← 1 to m
do ;
d(0) ← false
for b ← 0 to a - j
for b ← 0 to a - j
do;
if D[b] ∧ DICT s([b + 1 : : : a])
d (a) ← True
(b). Algorithm Output
if D[k] = = True
stack = temp stack ∦stack is used to print the strings in order
c = k
while C > 0
stack push (s [w(c)] : : : C] // w(p) is the position in s[1 : : : k] of the valid world at // position c
P = W (p) - 1
output stack
= 0 =
cheers i hope this helps !!!
Answer:
I think it would be unfulfilled
A web application starts when a client sends a request to a server
Answer: B) Vertical Partitioning
Explanation:
As, vertical partitioning is performed on Relation X, it is used for dividing the relation X vertically in columns and it involves creation of tables and columns. They also use some additional tables to store left out columns. We cannot partition the column without perform any modification of value of the column. It only relies on keeping the particular attributes of relation X.