1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
13

Evaluate the expression when x=12,y=-3 and z=-2

Mathematics
1 answer:
Degger [83]3 years ago
5 0

Answer:

(12)(3)(-2)

Step-by-step explanation:

You might be interested in
If p(x)=x^2+x+1 and q(x)=3x^2-1, find p(7)
Delvig [45]

Answer:

p(7) = 57

Step-by-step explanation:

Because this is a function, all you have to do is input 7 for x like so:

p(x)=x^2+x+1 --------------->     p(7)=7^2+7+1

                                            so 49 + 8

                                                = 57

7 0
3 years ago
A
N76 [4]

Answer:

https://classcalc.com/graphing-calculator/share/fJcbqPoXEobek5Lm6/untitled-calc

Step-by-step explanation:

x y=6x+12

-1 6

0 12

2 24

4 36

6 48

8 60

6 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
What is the volume of the cylinder below?
Ede4ka [16]

Answer: hey, the answer will be choice number 2 or b

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
The question is attached at the bottom. PLEASE HELP with detailed explanation!!!
Eva8 [605]
The correct answer are 1 , 3 , 4
8 0
3 years ago
Other questions:
  • Find the volume of a right cylinder with a diameter of 18 inches and a height of 20 inches. *
    10·2 answers
  • If f and f ◦ g are onto, does it follow that g is onto? justify your answer.
    6·1 answer
  • the two fastest times in the past 20 years for the girls 200 meter run at clarksville elementary school are 27.97 sec and 27.93
    12·2 answers
  • The length of a rectangle is twice the width. The area is 72 yd^2. Find the length and the width.
    8·1 answer
  • Renting a movie from a redbox costs $1.29 each night, plus a one time fee of $.50. How much would it cost for three nights?
    10·2 answers
  • Whit single transformation was applied to quadrilateral A to get quadrilateral B
    9·1 answer
  • Studying atoms helps people by providing research to common problems found in our environment, universe, and ourselves. Such as
    14·1 answer
  • Caleb has a board that measures 10 feet in length. How many 1/3 foot-long pieces can Caleb from the board?
    13·1 answer
  • M. Section 4.1
    10·1 answer
  • Which of the following properties completes the proof?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!