In order to use the remainder theorem, you need to have some idea what to divide by. The rational root theorem tells you rational roots will be from the list derived from the factors of the constant term, {±1, ±5}. When we compare coefficients of odd power terms to those of even power terms, we find their sums are equal, which means -1 is a root and (x +1) is a factor.
Dividing that from the cubic, we get a quotient of x² +6x +5 (and a remainder of zero). We recognize that 6 is the sum of the factors 1 and 5 of the constant term 5, so the factorization is
... = (x +1)(x +1)(x +5)
... = (x +1)²(x +5)
_____
The product of factors (x +a)(x +b) will be x² + (a+b)x + ab. That is, the factorization can be found by looking for factors of the constant term (ab) that add to give the coefficient of the linear term (a+b). The numbers found can be put directly into the binomial factors to make (x+a)(x+b).
When we have 1·5 = 5 and 1+5 = 6, we know the factorization of x²+6x+5 is (x+1)(x+5).
Answer: 6
How to find it out: a dice has 6 sides
Positive Slope
<em>TIP for finding what slope it is:</em>
<em>Positive </em>- the line is pointing right
<em>Negative</em> - the line is pointing left
<em>Undefined </em>- the line is pointing up and down
<em>Zero</em> - the line is point from left to right
Answer:
C. √2 - 1
Step-by-step explanation:
If we draw a square from the center of the large circle to the center of one of the small circles, we can see that the sides of the square are equal to the radius of the small circle (see attached diagram)
Let r = the radius of the small circle
Using Pythagoras' Theorem 
(where a and b are the legs, and c is the hypotenuse, of a right triangle)
to find the diagonal of the square:



So the diagonal of the square = 
We are told that the radius of the large circle is 1:
⇒ Diagonal of square + r = 1





Using the quadratic formula to calculate r:




As distance is positive,
only