Answer:
Step-by-step explanation:
It's given in this question,
m∠2 = 41°, m∠5 = 94° and m∠10 = 109°
Since, ∠2 ≅ ∠9 [Alternate interior angles]
m∠2 = m∠9 = 41°
m∠8 + m∠9 + m∠10 = 180° [Sum of angles at a point of a line]
m∠8 + 41 + 109 = 180
m∠8 = 180 - 150
m∠8 = 30°
Since, m∠2 + m∠7 + m∠8 = 180° [Sum of interior angles of a triangle]
41 + m∠7 + 30 = 180
m∠7 = 180 - 71
m∠7 = 109°
m∠6 + m∠7 = 180° [linear pair of angles]
m∠6 + 109 = 180
m∠6 = 180 - 109
= 71°
Since m∠5 + m∠4 = 180° [linear pair of angles]
m∠4 + 94 = 180
m∠4 = 180 - 94
m∠4 = 86°
Since, m∠4 + m∠3 + m∠9 = 180° [Sum of interior angles of a triangle]
86 + m∠3 + 41 = 180
m∠3 = 180 - 127
m∠3 = 53°
m∠1 + m∠2 + m∠3 = 180° [Angles on a point of a line]
m∠1 + 41 + 53 = 180
m∠1 = 180 - 94
m∠1 = 86°
Answer:
12 30
Step-by-step explanation:
Answer:
x ≥ $40
Step-by-step explanation:
Jackie didn't spend more than $40 on a video.
x ≥ $40
Answer:
1. x = 21
2. m∡ABC = 51°
Step-by-step explanation:
First problem, solve for x
the sum of inside angles of a triangle is 180
also the supplementary angle for L = 180 - 100 is 80°
now you can add all angles
80 + 2x - 11 + 2x + 27 = 180
4x + 96 = 180
4x = 84
x = 21
Second problem, solve for m∡ABC
the sum of inside angles of a triangle is 180
also the supplementary angle for C = 180 - 148 is 32°
now you can add all angles
31 + 2x - 15 + x - 5 = 180
3x + 12 = 180
3x = 168
x= 56,
now solve for m∡ABC = (x - 5)° = (56 - 5)° = 51°