Put the equation in standard linear form.

Find the integrating factor.

Multiply both sides by
.

Now the left side the derivative of a product,

Integrate both sides.

On the right side, integrate by parts.

Solve for
.

For the answer to the question above, the easiest way to determine is changing every runner's speed into the same unit.
<span>First = 10 m/s </span>
<span>Second = 10 miles/min = 16090.34 / 60 m/s (As 1 mile = 1609.34 meter and 1 min = 60 sec) </span>
<span>Second = 260.82 m/s </span>
<span>Third = 10 cm/hr = 10*(0.01)/60*60 (As 1 cm = 0.01 m and 1 hr = 60*60 sec) </span>
<span>Third = 0.000028 m/s </span>
<span>Fourth = 10 km/sec = 10*1000 m/s (As 1 km = 1000 m and time is already in sec) </span>
<span>Fourth = 10000 m/s </span>
<span>So fastest would be the one who covers the largest distance in 1 sec. It would be the fourth one.</span>
Answer:
Option A) One tailed test is a hypothesis test in which rejection region is in one tail of the sampling distribution
Step-by-step explanation:
One Tailed Test:
- A one tailed test is a test that have hypothesis of the form

- A one-tailed test is a hypothesis test that help us to test whether the sample mean would be higher or lower than the population mean.
- Rejection region is the area for which the null hypothesis is rejected.
- If we perform right tailed hypothesis that is the upper tail hypothesis then the rejection region lies in the right tail after the critical value.
- If we perform left tailed hypothesis that is the lower tail hypothesis then the rejection region lies in the left tail after the critical value.
Thus, for one tailed test,
Option A) One tailed test is a hypothesis test in which rejection region is in one tail of the sampling distribution
The angles will help you tell the difference. In a rectangle, all angles are 90 degrees. In a rhombus, the 2 opposite facing angles are the same and all side lengths are the same.
Hope I helped. :P