The answer is A!! Hope I helped
D blue I think, it has the most tiles in the bag 17/40 while all the other fractions are smaller decreasing their chances
<span>Assuming that the particle is the 3rd
particle, we know that it’s location must be beyond q2; it cannot be between q1
and q2 since both fields point the similar way in the between region (due to
attraction). Choosing an arbitrary value of 1 for L, we get </span>
<span>
k q1 / d^2 = - k q2 / (d-1)^2 </span>
Rearranging to calculate for d:
<span> (d-1)^2/d^2 = -q2/q1 = 0.4 </span><span>
<span> d^2-2d+1 = 0.4d^2 </span>
0.6d^2-2d+1 = 0
d = 2.72075922005613
d = 0.612574113277207 </span>
<span>
We pick the value that is > q2 hence,</span>
d = 2.72075922005613*L
<span>d = 2.72*L</span>
Answer:
x = 54
y = 47.5
Step-by-step explanation:
If two lines p and q are parallel and line r is a transversal intersecting these lines at two different points,
(x + 56)° = (2x + 2)° [corresponding angles]
2x - x = 56 - 2
x = 54
Similarly, lines r and s are parallel lines and q is a transversal line intersecting these lines,
(y + 7)° + (3y - 17)°= 180° [Consecutive exterior angles]
4y - 10 = 180
4y = 190
y = 47.5
Answer:
(A) 0.377,
(B) 0.000,
(C) 0.953,
(D) 0.047
Step-by-step explanation:
We assume that having a bone of intention means not liking one's Mother-in-Law
(A) P(all six dislike their Mother-in-Law) = (85%)^6 = (.85)^6 = 0.377
(B) P(none of the six dislike their Mother-in-Law) =
(100% - 85%)^6 =
0.15^6 =
0.000
(C) P(at least 4 dislike their Mother-in-Law) =
P(exactly 4 dislike their Mother-in-Law) + P(exactly 5 dislike their Mother-in-Law) + P(exactly 6 dislike their Mother-in-Law) =
C(6,4) * (.85)^4 * (1-.85)^2 + C(6,5) * (.85)^5 * (.15)^1 + C(6,6) * (.85)^6 = (15) * (.85)^4 * (.15)^2 + (6) * (.85)^5 * .15 + (1) * (.85)^6 =
0.953
(D) P(no more than 3 dislike their Mother-in-Law) =
P(exactly 0 dislikes their Mother-in-Law) + P(exactly 1 dislikes her Mother) + P(exactly 2 dislike their Mother-in-Law) + P(exactly 3 dislike their Mother-in-Law) =
C(6,0) * (.85)^0 * (.15)^6 + C(6,1) * (.85)^1 * (.15)^5 + C(6,2) * (.85)^2 * (.15)^4 + C(6,3) * (.85)^3 * (.15)^3 =
(1)(1)(.15)^6 + (6)(.85)(.15)^5 + (15)(.85)^2 *(.15)^4 + (20)(.85)^3 * (.15)^3 =
0.047