Answer:
A. 1:3
Explanation:
If we look at the ions shown in the image attached to the question, we will notice that we have aluminum (Al^3+), a trivalent ion combining with the iodide ion (I^-).
Aluminum can easily give out its three outermost electrons to three atoms of iodine. If aluminum gives out its three electrons, it achieves the stable octet structure. Iodine atoms have seven electrons in their outermost shell. They only need one more electrons to complete their octet. This one electron can be gotten by the combination of three iodine atoms with one atom of aluminum. One electron each is transferred from the aluminum atom to each iodine atom to form AlI3 with a ratio of 1:3.
<em>hey, im jordan :)</em>
the SI unit for the mass of subatomic particles is <u>amu (atomic mass unit)</u>
<em>hope this helps!</em>
<em>have a great day :D</em>
Answer:
56°
Explanation:
First calculate 

The interplanar spacing can be calculated from:

The diffraction angle is determined from:

Solve for 

The diffraction angle is:

In order for carbon to be stable and have 8 electrons, it must make 4 total covalent bonds.
In prefer for oxygen to be stable and have 8 electrons, it must make 2 covalent bonds.
So, we can deduce that CO2 looks like this:
O=C=O
This molecule has two double bonds.
Pssst...Can I get a brainliest?
9 g of hydrogen - 42 g of nitrogen
5 g of hydrogen - x g of nitrogen

The mass of nitrogen in the second sample is 23.33 g.