For large sample confidence intervals about the mean you have:
xBar ± z * sx / sqrt(n)
where xBar is the sample mean z is the zscore for having α% of the data in the tails, i.e., P( |Z| > z) = α sx is the sample standard deviation n is the sample size
We need only to concern ourselves with the error term of the CI, In order to find the sample size needed for a confidence interval of a given size.
z * sx / sqrt(n) = width.
so the z-score for the confidence interval of .98 is the value of z such that 0.01 is in each tail of the distribution. z = 2.326348
The equation we need to solve is:
z * sx / sqrt(n) = width
n = (z * sx / width) ^ 2.
n = ( 2.326348 * 6 / 3 ) ^ 2
n = 21.64758
Since n must be integer valued we need to take the ceiling of this solution.
n = 22
Answer:
- length: 30 ft
- width: 10 ft
Step-by-step explanation:
The description of the garden fits that of 3 squares arranged side-by-side. The area of each of those would be 100 ft², so their side length would be ...
s = √A= √(100 ft²) = 10 ft
This dimension is the width of the garden, whose length is 3 times this amount.
The length and width of the garden are 30 ft and 10 ft, respectively.
Answer:
No.
Step-by-step explanation:
Well, is the points (1, -9) does satisfy the equation y = 3x - 6. Then, substituting the values of x, and, y, into the equation y = 3x - 6, we should get a true equation.
y = 3x - 6
-9 = 3 * 1 - 6
-9 = 3 - 6
-9 = -3.
So, the points (1, -9) does not satisfy the equation y = 3x - 6.
The range is 13 because 115-102 is 13