Answer:
Option A. 
Explanation:
This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go. At a couple points, we'll need to apply u-substitution.
<u>Round 1:</u>
To solve the differential equation, write it as differentials, move the differential, and integrate both sides:


![dy'=[e^{-2t}+10e^{4t}]dt](https://tex.z-dn.net/?f=dy%27%3D%5Be%5E%7B-2t%7D%2B10e%5E%7B4t%7D%5Ddt)
![\int dy'=\int [e^{-2t}+10e^{4t}]dt](https://tex.z-dn.net/?f=%5Cint%20dy%27%3D%5Cint%20%5Be%5E%7B-2t%7D%2B10e%5E%7B4t%7D%5Ddt)
Applying various properties of integration:

Prepare for integration by u-substitution
, letting
and 
Find dt in terms of 


Using the Exponential rule (don't forget your constant of integration):

Back substituting for
:

<u>Finding the constant of integration</u>
Given initial condition 

The first derivative with the initial condition applied: 
<u>Round 2:</u>
Integrate again:
![y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\](https://tex.z-dn.net/?f=y%27%20%3D-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7De%5E%7B4t%7D%20-2%5C%5C%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7De%5E%7B4t%7D%20-2%5C%5Cdy%20%3D%5B-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7De%5E%7B4t%7D%20-2%5Ddt%5C%5C%5Cint%20dy%20%3D%5Cint%20%5B-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7De%5E%7B4t%7D%20-2%5Ddt%5C%5C%5Cint%20dy%20%3D%5Cint%20-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20dt%20%2B%20%5Cint%20%5Cfrac%7B5%7D%7B2%7De%5E%7B4t%7D%20dt%20-%20%5Cint%202%20dt%5C%5C%5Cint%20dy%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cint%20e%5E%7B-2t%7D%20dt%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20%5Cint%20e%5E%7B4t%7D%20dt%20-%202%20%5Cint%20dt%5C%5C)

<u />
<u>Finding the constant of integration :</u>
Given initial condition 

So, 
<u>Checking the solution</u>

This matches our initial conditions here 
Going back to the function, differentiate:
![y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'](https://tex.z-dn.net/?f=y%27%20%3D%20%5B%5Cfrac%7B1%7D%7B4%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B8%7D%20e%5E%7B4t%7D%20-%202%20t%20%2B%20%5Cfrac%7B1%7D%7B8%7D%5D%27%5C%5Cy%27%20%3D%20%5B%5Cfrac%7B1%7D%7B4%7D%20e%5E%7B-2t%7D%5D%27%20%2B%20%5B%5Cfrac%7B5%7D%7B8%7D%20e%5E%7B4t%7D%5D%27%20-%20%5B2%20t%5D%27%20%2B%20%5B%5Cfrac%7B1%7D%7B8%7D%5D%27%5C%5Cy%27%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Be%5E%7B-2t%7D%5D%27%20%2B%20%5Cfrac%7B5%7D%7B8%7D%20%5Be%5E%7B4t%7D%5D%27%20-%202%20%5Bt%5D%27%20%2B%20%5B%5Cfrac%7B1%7D%7B8%7D%5D%27)
Apply Exponential rule and chain rule, then power rule
![y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20e%5E%7B-2t%7D%5B-2t%5D%27%20%2B%20%5Cfrac%7B5%7D%7B8%7D%20e%5E%7B4t%7D%5B4t%5D%27%20-%202%20%5Bt%5D%27%20%2B%20%5B%5Cfrac%7B1%7D%7B8%7D%5D%27%5C%5Cy%27%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20e%5E%7B-2t%7D%28-2%29%20%2B%20%5Cfrac%7B5%7D%7B8%7D%20e%5E%7B4t%7D%284%29%20-%202%20%281%29%20%2B%20%280%29%5C%5Cy%27%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%20-%202)
This matches our first order step and the initial conditions there.

Going back to the function y', differentiate:
![y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'](https://tex.z-dn.net/?f=y%27%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%20-%202%5C%5Cy%27%27%20%3D%20%5B-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%20-%202%5D%27%5C%5Cy%27%27%20%3D%20%5B-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%5D%27%20%2B%20%5B%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%5D%27%20-%20%5B2%5D%27%5C%5Cy%27%27%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20%5Be%5E%7B-2t%7D%5D%27%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20%5Be%5E%7B4t%7D%5D%27%20-%20%5B2%5D%27)
Applying the Exponential rule and chain rule, then power rule
![y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}](https://tex.z-dn.net/?f=y%27%27%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%5B-2t%5D%27%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%5B4t%5D%27%20-%20%5B2%5D%27%5C%5Cy%27%27%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20e%5E%7B-2t%7D%28-2%29%20%2B%20%5Cfrac%7B5%7D%7B2%7D%20e%5E%7B4t%7D%284%29%20-%20%280%29%5C%5Cy%27%27%20%3D%20e%5E%7B-2t%7D%20%2B%2010%20e%5E%7B4t%7D)
So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.