The equation which models the distance (d) of the weight from its equilibrium after time (t) is equal to d = -9cos(2π/3)t.
<h3>What is the period of a cosine function?</h3>
The period of a cosine function simply means the total length (distance) of the interval of values on the x-axis over which a graph lies and it's repeated.
Since the weight attached is at its lowest point at time (t = 0), therefore, the amplitude of equation will be negative nine (-9)
For the angular velocity at time period (t = 3s), we have:
ω = 2π/T
ω = 2π/3
Mathematically, the standard equation of a cosine function is given by:
y = Acos(ω)t
Substituting the given parameters into the formula, we have;
d = -9cos(2π/3)t.
Read more on cosine function here: brainly.com/question/4599903
The answer is 67 because 67 x 82 is 5,494 which us close to 5,514
Answer:
lw +
× π ×
⇒ Answer D is correct
Step-by-step explanation:
First, let us find the area of the semi-circle.
Area =
× π × r²
<u>Given that,</u>
diameter of the semi-circle is ⇒ <em>l</em>
∴ radius ⇒ <em>l / 2</em>
<u>Let us find it now.</u>
Area =
× π × r²
Area =
× π × 
<u> </u>
Secondly, let us find the area of the rectangle.
Area = length × width
<u>Given that,</u>
length ⇒ <em>l</em>
width ⇒ w
<u>Let us find it now.</u>
Area = length × width
Area = l ×w
Area = lw
<u> </u>
And now let us <u>find the total area.</u>
Total area = Area of the rectangle + Area of the semi - circle
Tota area = lw +
× π × 
Answer:
I think the answer is P(x>178)
Step-by-step explanation:
Answer:
235 bracelets
Step-by-step explanation:
Mai must spend $250 on wire and $5.30 per bracelet beads. Mai creates the expression.
We are given the equation:
5.3n+ 250 to represent the cost of making n bracelets.
The maximum number of bracelets Mai can make with a budget of $1500 Is calculated as:
$1500 = 5.3n+ 250
Collect like terms
1500 - 250 = 5.3n
1250 = 5.3n
n = 1250/5.3
n = 235.8490566 bracelets.
Bracelets are created as whole numbers and they can't be in decimal form.
Therefore, the maximum number of bracelets Mai can make with a budget of $1500 is 235 bracelets.