Check the picture below.
to get the equation of any straight line, we simply need two points off of it, so let's use those in the picture
![(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{6})~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{(-2)}}} \implies \cfrac{6 -1}{4 +2} \implies \cfrac{ 5 }{ 6 }](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B6%7D-%5Cstackrel%7By1%7D%7B1%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B%28-2%29%7D%7D%7D%20%5Cimplies%20%5Ccfrac%7B6%20-1%7D%7B4%20%2B2%7D%20%5Cimplies%20%5Ccfrac%7B%205%20%7D%7B%206%20%7D)
![\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{\cfrac{5}{6}}(x-\stackrel{x_1}{(-2)})\implies y-1=\cfrac{5}{6}(x+2) \\\\\\ y-1=\cfrac{5}{6}x+\cfrac{5}{3}\implies y=\cfrac{5}{6}x+\cfrac{5}{3}+1\implies y=\cfrac{5}{6}x+\cfrac{8}{3}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B1%7D%3D%5Cstackrel%7Bm%7D%7B%5Ccfrac%7B5%7D%7B6%7D%7D%28x-%5Cstackrel%7Bx_1%7D%7B%28-2%29%7D%29%5Cimplies%20y-1%3D%5Ccfrac%7B5%7D%7B6%7D%28x%2B2%29%20%5C%5C%5C%5C%5C%5C%20y-1%3D%5Ccfrac%7B5%7D%7B6%7Dx%2B%5Ccfrac%7B5%7D%7B3%7D%5Cimplies%20y%3D%5Ccfrac%7B5%7D%7B6%7Dx%2B%5Ccfrac%7B5%7D%7B3%7D%2B1%5Cimplies%20y%3D%5Ccfrac%7B5%7D%7B6%7Dx%2B%5Ccfrac%7B8%7D%7B3%7D)
Answer:
nice bro good for you :)
Step-by-step explanation:
Refer to the diagram shown below.
Given:
m∠A = 19°
c = 15
By definition,
sin A = a/c
Therefore
a = c*sin A = 15*sin(19°) = 4.8835
cos A = b/c
Therefore
b = c*cos A = 15*cos(19°) =14.1828
Answer:
The lengths are 4.88, 14.18, and 15.00 (nearest hundredth)
Answer:
$33.60
Step-by-step explanation:
multiply 40 by 0.20 = 8 subtract 8 from 40= 32 x 0.05 is 1.6 so its 33.6
Answer:
It's b
it's kinda hard to explain but it ends up showing .7x.5 on the example, so your answer is B