1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tcecarenko [31]
3 years ago
8

For a triangle $XYZ$, we use $[XYZ]$ to denote its area. Let $ABCD$ be a square with side length $1$. Points $E$ and $F$ lie on

$\overline {BC}$ and $\overline {CD}$, respectively, in such a way that $\angle EAF=45^\circ.$ If $[CEF]=1/19$, what is the value of $[AEF]$?
Mathematics
1 answer:
nata0808 [166]3 years ago
6 0

An algebraic equation enables the expression of equality between variable expressions

\underline{The \ value \ of \ [AEF] \ is \ \dfrac{4}{9}}

The reason the above value is correct is given as follows:

The given parameters are;

The symbol for the area of a triangle ΔXYZ = [XYZ]

The side length of the given square ABCD = 1

The location of point <em>E</em> = Side \overline{BC} on square ABCD

The location of point <em>F</em> = Side \overline{CD} on square ABCD

∠EAF = 45°

The area of ΔCEF, [CEF] = 1/9 (corrected by using a similar online question)

Required:

To find the value of [AEF]

Solution:

The area of a triangle = (1/2) × Base length × Height

Let <em>x</em> = EC, represent the base length of ΔCEF, and let <em>y</em> = CF represent the height of triangle ΔCEF

We get;

The area of a triangle ΔCEF, [CEF] = (1/2)·x·y = x·y/2

The area of ΔCEF, [CEF] = 1/9 (given)

∴ x·y/2 = 1/9

ΔABE:

\overline{BE} = BC - EC = 1 - x

The area of ΔABE, [ABE] = (1/2)×AB ×BE

AB = 1 = The length of the side of the square

The area of ΔABE, [ABE] = (1/2)× 1 × (1 - x) = (1 - x)/2

ΔADF:

\overline{DF} = CD - CF = 1 - y

The area of ΔADF, [ADF] = (1/2)×AD ×DF

AD = 1 = The length of the side of the square

The area of ΔADF, [ADF] = (1/2)× 1 × (1 - y) = (1 - y)/2

The area of ΔAEF, [AEF] = [ABCD] - [ADF] - [ABE] - [CEF]

[ABCD] = Area of the square = 1 × 1

[AEF] = 1 - \dfrac{1 - x}{2} - \dfrac{1 - y}{2} - \dfrac{1}{19}= \dfrac{19 \cdot x + 19 \cdot y - 2}{38}

From \dfrac{x \cdot y}{2} = \dfrac{1}{9}, we have;

x = \dfrac{2}{9 \cdot y}, which gives;

[AEF] =  \dfrac{9 \cdot x + 9 \cdot y - 2}{18}

Area of a triangle = (1/2) × The product of the length of two sides × sin(included angle between the sides)

∴ [AEF] =  (1/2) × \overline{AE} × \overline{FA} × sin(∠EAF)

\overline{AE} = √((1 - x)² + 1), \overline{FA}  = √((1 - y)² + 1)

[AEF] =  (1/2) × √((1 - x)² + 1) × √((1 - y)² + 1) × sin(45°)

Which by using a graphing calculator, gives;

\dfrac{1}{2} \times \sqrt{(1 - x)^2 + 1} \times \sqrt{(1 - y)^2 + 1} \times \dfrac{\sqrt{2} }{2} =  \dfrac{9 \cdot x + 9 \cdot y - 2}{18}

Squaring both sides and plugging in x = \dfrac{2}{9 \cdot y}, gives;

\dfrac{(81 \cdot y^4-180 \cdot y^3 + 200 \cdot y^2 - 40\cdot y +4)\cdot y^2}{324\cdot y^4}  = \dfrac{(81\cdot y^4-36\cdot y^3 + 40\cdot y^2 - 8\cdot y +4)\cdot y^2}{324\cdot y^2}

Subtracting the right hand side from the equation from the left hand side gives;

\dfrac{40\cdot y- 36\cdot y^2 + 8}{81\cdot y} = 0

36·y² - 40·y + 8 = 0

y = \dfrac{40 \pm \sqrt{(-40)^2-4 \times 36\times 8} }{2 \times 36} = \dfrac{5 \pm \sqrt{7} }{9}

[AEF] =  \dfrac{9 \cdot x + 9 \cdot y - 2}{18} = \dfrac{9 \cdot y^2-2 \cdot y + 2}{18 \cdot y}

Plugging in y =  \dfrac{5 + \sqrt{7} }{9} and rationalizing surds gives;

[AEF] =  \dfrac{9 \cdot \left(\dfrac{5 + \sqrt{7} }{9}\right) ^2-2 \cdot \left(\dfrac{5 + \sqrt{7} }{9}\right)  + 2}{18 \cdot \left(\dfrac{5 + \sqrt{7} }{9}\right) } = \dfrac{\dfrac{40+8\cdot \sqrt{7} }{9} }{10+2\cdot \sqrt{7} } = \dfrac{32}{72} = \dfrac{4}{9}

Therefore;

\underline{[AEF]= \dfrac{4}{9}}

Learn more about the use of algebraic equations here:

brainly.com/question/13345893

You might be interested in
If two cards are drawn from a regular shuffled deck, what is the probability that both cards will be diamonds?​
Nastasia [14]

Answer: The first card is a diamond and the second card is a heart. Both cards are hearts. Let H denote the event that a heart is drawn; let D denote the event that a diamond is drawn. The first card is a diamond and the second card is a heart: The probability of drawing a diamond on the first draw

Step-by-step explanation:

6 0
3 years ago
Volunteers for a political campaign gave out 21/38 of their fliers. They gave out the remaining 612 fliers in another neighborho
wel

Answer:

<u>The total number of fliers the volunteers gave out is 1,368: 756 in the first neighborhood and 612 in the second.</u>

Step-by-step explanation:

1. Let's review the information provided to us to answer the question correctly:

Amount of fliers the volunteers gave for a political campaign = 21/38

Remaining 612 were given out in another neighborhood

2. What is the total number of fliers they gave out?

x = Total of fliers

21x/38 = Fliers given out in the first neighborhood

612 = Fliers given out in the second neighborhood

Let's solve for x, this way:

x - 21x/38 = 612

38x - 21x = 612 * 38 (38 is the Lowest Common Denominator)

17x = 23,256

x = 23,256/17

x = 1,368

<u>The total number of fliers the volunteers gave out is 1,368: 756 in the first neighborhood and 612 in the second.</u>

Note: Same answer to question 14676213, answered by me yesterday.

3 0
3 years ago
The standard equation of a circle with center (h.k) and radius r is (% - hy * (y - Ky = p. Which
zlopas [31]

Answer:

YOUR A DOG ..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3 0
3 years ago
(x+yi)-(-6+14i) = 18+2i <br><br> Can somebody help me solve for X and Y
Viktor [21]
Answer:
Equation A: x = -1 and y = 3
Equation B: x = 12 and y = 16
Step-by-step explanation:
In the complex numbers (a + bi) and (x + yi)
(a + bi) + (x + yi) = (a + x) + (b + y)i
(a + bi) - (x + yi) = (a - x) + (b - y)i
Equation A
∵ (x + yi) + (4 – 7i) = 3 – 4i
∴ (x + 4) + (y - 7)i = 3 - 4i
→ Compare the real parts and compare the imaginary parts
∴ x + 4 = 3 and y - 7 = -4
∵ x + 4 = 3
→ Subtract 4 from both sides
∴ x + 4 - 4 = 3 - 4
∴ x = -1
∵ y - 7 = -4
→ Add 7 to both sides
∴ y - 7 + 7 = -4 + 7
∴ y = 3
Equation B
∵ (x + yi) - (-6 + 14i) = 18 + 2i
∴ (x - -6) + (y - 14)i = 18 + 2i
→ (-)(-) = (+)
∴ (x + 6) + (y - 14)i = 18 + 2i
→ Compare the real parts and compare the imaginary parts
∴ x + 6 = 18 and y - 14 = 2
∵ x + 6 = 18
→ Subtract 6 from both sides
∴ x + 6 - 6 = 18 - 6
∴ x = 12
∵ y - 14 = 2
→ Add 14 to both sides
∴ y - 14 + 14 = 2 + 14
∴ y = 16
5 0
3 years ago
Read 2 more answers
Help!! i really don’t know how to do this!!
Bogdan [553]
search itup search it up
7 0
3 years ago
Other questions:
  • Sorry forgot to add the answers
    9·2 answers
  • What is the standard form 50,000+300+70+2
    5·2 answers
  • Explain how you know weather to add or subtract when you use the distributive property to multiply
    12·2 answers
  • Pleaseeee help im really confused?!?!?!?!?!?!?!??!!?!?
    5·1 answer
  • A $65 coat is now on sale for $52. What percent discount is given?
    9·2 answers
  • Solve for x and y adding <br> 2x + 4y = 16<br> -5x-4y = 16<br> Show work
    9·1 answer
  • Convert the following angle from degrees, minutes and seconds into decimal degrees.<br> 27° 20' 58"
    14·1 answer
  • Find the mean proportion between 28 and 63.​
    10·1 answer
  • 8 1/3 X 4/6 = <br> Expectations:<br> -Work is shown
    13·1 answer
  • Which one is the answer​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!