The blood cell will lose water and will undergo lysis.
Cell membrane is permeable to water and can get/lose water via osmosis. Osmosis is induced by the gradient of concentration of the solution. In this case, the 10M salt solution has a very high oncotic pressure that it will attract nearby water. That means the water inside the cells will be taken into the solution and cell will continue to shrink and then die.
A picture of the graph will help us help you
Answer:
A. His mitochondria lack the transport protein that moves pyruvate across the outer mitochondrial membrane.
Explanation:
Pyruvate is from the breakdown of carbohydrates such as glucose through glycolysis. Glucose enters the cytosol through specific transporters (the GLUT family) and is processed by one of several pathways depending on cellular requirements. Glycolysis occurs in the cytosol and produces a limited amount of ATP, but the end product is two 3-carbon molecules of pyruvate, which maybe diverted again into many pathways depending on the requirements of the cell. In aerobic conditions, pyruvate is primarily transported into the mitochondrial matrix and converted to acetyl-coenzyme A (acetyl-CoA) and carbon dioxide by the pyruvate dehydrogenase complex (PDC).
Initially it was proposed that pyruvate was able to cross the membrane in its undissociated (acid) form but evaluation of its biochemical properties show that it is largely in its ionic form within the cell and should therefore require a transporter.
Transport of pyruvate across the outer mitochondrial membrane appears to be easily accomplished via large non-selective channels such as voltage-dependent anion channels/porin, which enable passive diffusion. Indeed, deficiencies in these channels have been suggested to block pyruvate metabolism