<h2>Steps:</h2>
So for this, we will be completing the square to solve for m. Firstly, subtract 8 on both sides:

Next, divide both sides by 2:

Next, we want to make the left side of the equation a perfect square. To find the constant of this perfect square, divide the m coefficient by 2, then square the quotient. In this case:
-8 ÷ 2 = -4, (-4)² = 16
Add 16 to both sides of the equation:

Next, factor the left side:

Next, square root both sides of the equation:

Next, add 4 to both sides of the equation:

Now, while this is your answer, you can further simplify the radical using the product rule of radicals:
- Product rule of radicals: √ab = √a × √b
√12 = √4 × √3 = 2√3.

<h2>Answer:</h2>
In exact form, your answer is 
In approximate form, your answers are (rounded to the hundreths) 
T.S.A. = pi (7) (24) + pi (7)^2 = 168pi + 49pi = 217 pi cm^2 = more or less 681,73 cm^2
Hi I am here to help the answer is 46-90
Answer:
4600
Step-by-step explanation:
We can write a proportion to find the total amount who attend university using the information given. A proportion is two equivalent ratios set equal to each other. Since 70% live on campus, then 30% live off campus and we are told that number is 1,380.

We will cross multiply the numerator of one ratio with denominator of the other. And then solve for y.
30y=100(1380)
30y=138000
y=4600.
There are 4600 students who attend the university.
<u>Given</u>:
The given inequality is 
We need to determine the solution of the inequality in interval notation.
<u>Solution of the inequality:</u>
The solution of the inequality can be determined by simplifying the inequality.
Thus, we have,


Subtracting both sides by 3, we get;

Subtracting both sides by 2u, we have;

Dividing both sides by 4, we get;

Writing it in interval notation, we get;

Thus, the solution of the inequality is 