This question is not complete. This is because it lacks the appropriate diagram containing necessary information to solve this question.
Please find attached the appropriate diagram to solve for this question
Complete Question :
The surface area of a given cone is 1,885.7143 square inches. What is the slant height?
Answer:
25 inches
Step-by-step explanation:
In the diagram, we are given the following information
Height of the cone = 20 inches
Radius of the cone = 15 inches.
The formula for the slant height of a cone represented by l =
l² = r² + h²
l = √(r² + h²)
l = √(15² + 20²)
l = √(225 + 400)
l = √625
l = 25 inches
Therefore, the slant height of this cone = 25 inches
Distance = Rate x time
Time = 4.5 hours
Rate = 70 miles per hour
Distance = 70 x 4.5 = 315 miles.
2000 = x * y
y = 2000 / x
c = 0.3 * (2y + x) + 0.5x = 0.6y + 0.8x = 0.6 * 2000 / x + 0.8x = 1200/x + 0.8x
Answer:
ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm and i Oop
Step-by-step explanation:
Answer:
A. We have two lines: y = 2-x and y = 4x+3 Given two simultaneous equations that are both required to be true.. the solution is the points where the lines cross... Which is where the two equations are equal.. Thus the solution that works for both equations is when 2-x = 4x+3 because where that is true is where the two lines will cross and that is the common point that satisfies both equations. B. 2-x = 4x+3 x 2-x 4x+3
______________
-3 5 -9
-2 4 -5
-1 3 -1
0 2 3
1 1 7
2 0 11
3 -1 15
The table shows that none of the integers from [-3,3] work because in no case does
2-x = 4x+3 To find the solution we need to rearrange the equation to the form x=n 2-x = 4x+3 2 -x + x = 4x + x +3 2 = 5x + 3 2-3 = 5x +3-3 5x = -1 x = -1/5 The only point that satisfies both equations is where x = -1/5 Find y: y = 2-x = 2 - (-1/5) = 2 + 1/5 = 10/5 + 1/5 = 11/5 Verify we get the same in the other equation y = 4x + 3 = 4(-1/5) + 3 = -4/5 + 15/5 = 11/5 Thus the only actual solution, being the point where the lines cross, is the point (-1/5, 11/5) C. To solve graphically 2-x=4x+3 we would graph both lines... y = 2-x and y = 4x+3 The point on the graph where the lines cross is the solution to the system of equations ... [It should be, as shown above, the point (-1/5, 11/5)] To graph y = 2-x make a table.... We have already done this in part B x 2-x x 4x+3 _______ ________ -1 3 -1 -1 0 2 0 3 1 1 1 7 Just graph the points on a cartesian coordinate system and draw the two lines. The solution is, as stated, the point where the two lines cross on the graph.
Hope this helps.
Step-by-step explanation: