7D%7Bc%7Cc%7D%20%5Cbf%20f%28x%29%20%26%20%5Cbf%20%5Cdisplaystyle%20%5Cint%20%5Crm%20%5C%3Af%28x%29%20%5C%3A%20dx%5C%5C%20%5C%5C%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%26%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%5C%5C%20%5Csf%20k%20%26%20%5Csf%20kx%20%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20sinx%20%26%20%5Csf%20-%20%5C%3A%20cosx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20cosx%20%26%20%5Csf%20%5C%3A%20sinx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bsec%7D%5E%7B2%7D%20x%20%26%20%5Csf%20tanx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bcosec%7D%5E%7B2%7Dx%20%26%20%5Csf%20-%20cotx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20secx%20%5C%3A%20tanx%20%26%20%5Csf%20secx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20cosecx%20%5C%3A%20cotx%26%20%5Csf%20-%20%5C%3A%20cosecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20tanx%20%26%20%5Csf%20logsecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%5Cdfrac%7B1%7D%7Bx%7D%20%26%20%5Csf%20logx%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%26%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%2B%20c%5Cend%7Barray%7D%7D%20%5C%5C%20%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D" id="TexFormula1" title="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" alt="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" align="absmiddle" class="latex-formula"> Answer with proper explanation. → Expecting answer from : ★ Moderators ★ Brainly stars and teacher ★ Others best users
1 answer:
Step-by-step explanation:
Am not sure what your question is? But if you are asking about a proof, then you may use Taylor series to prove these integrals...
You might be interested in
Answer:
the range is 765
Step-by-step explanation:
to find range you must find the largest and smallest number and subtract
if i know the anwser,you must gave mini love
X/6-33=-27 -27+33=6 x/6=6 6x6=36 X=36
Turn 1 3/4 into a decimal which equal 1.75. Because 10/10 = 1.00 Same thing with 7/10 = 0.70 Take 1.75 - 0.70 = 1.05
The Federal Bureau of Investigation is not an agency under the direction of the Department of Homeland Security. The correct option among all the options that are given in the question is the third option or option "c". FBI is actually the domestic intelligence and security agency. I hope the answer comes to your help.