1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
2 years ago
6

7D%7Bc%7Cc%7D%20%5Cbf%20f%28x%29%20%26%20%5Cbf%20%5Cdisplaystyle%20%5Cint%20%5Crm%20%5C%3Af%28x%29%20%5C%3A%20dx%5C%5C%20%5C%5C%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%26%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%5C%5C%20%5Csf%20k%20%26%20%5Csf%20kx%20%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20sinx%20%26%20%5Csf%20-%20%5C%3A%20cosx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20cosx%20%26%20%5Csf%20%5C%3A%20sinx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bsec%7D%5E%7B2%7D%20x%20%26%20%5Csf%20tanx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bcosec%7D%5E%7B2%7Dx%20%26%20%5Csf%20-%20cotx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20secx%20%5C%3A%20tanx%20%26%20%5Csf%20secx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20cosecx%20%5C%3A%20cotx%26%20%5Csf%20-%20%5C%3A%20cosecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20tanx%20%26%20%5Csf%20logsecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%5Cdfrac%7B1%7D%7Bx%7D%20%26%20%5Csf%20logx%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%26%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%2B%20c%5Cend%7Barray%7D%7D%20%5C%5C%20%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D" id="TexFormula1" title="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" alt="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" align="absmiddle" class="latex-formula">
Answer with proper explanation.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​
Mathematics
1 answer:
Irina-Kira [14]2 years ago
6 0

\int \frac{dx}{x}  = log(x) + c \\  \int \frac{f \prime(x)}{f(x)}  = log  \mid \: f(x) \mid + c \\  \int \: tan(x)dx =  \int \:  \frac{sin(x)}{cos(x)} dx \\  =  - log|cos(x)|  + c  \\  = log |sec(x)|  + c \\ the \: same \: rule \: goes \: for \: cot...etc.\\\int {sec}^{2}(x)dx=|tan(x)|+c\\let u=tanx\\ \frac{du}{dx}={sec}^{2}(x)\rightarrow {du}={sec}^{2}(x)dx\\ \int du=|u|+c\\ \therefore tan|x|+c

Step-by-step explanation:

Am not sure what your question is? But if you are asking about a proof, then you may use Taylor series to prove these integrals...

You might be interested in
2.1(2.3 + 2.1x) = 11.65 + x. Step by step equation please help
DedPeter [7]

Answer:

x=2

Step-by-step explanation:

2.1(2.3 + 2.1x) = 11.65 + x

Distribute

4.83+4.41x=11.65+x

bring 4.83 over (-)

4.41x=6.82+x

bring x over

4.41x-1(x)=6.82

4.41-1=3.41 so

3.41x=6.82

divide 3.41

x=2

3 0
3 years ago
A specialty shoe manufacturer developed a new insole for running shoes. A study was produced in which some participants were giv
Alexandra [31]
Blinding is part of this, as the participants do not know whether they received the competitor's product.
5 0
3 years ago
Read 2 more answers
Last year Rikki sang 960 songs with his rock band. How many songs did he sing per month? How did you get your answer?
alexira [117]
If he sang the same number of songs each month, he sang 80 songs per month.

960/12 (months) = 80 (songs per month)
6 0
3 years ago
C. Solve 1/2 x - (x+3)<1/3(x-1)​
MAVERICK [17]

Answer: x = 28

Step-by-step explanation:

Let's solve your equation step by step!

3/8x + 15/2 = 18

Step 1: Subtract 15/2 from both sides.

3/8x + 15/2 - 15/2 = 18 - 15/2

3/8x = 21/2

Step 2: Multiply both sides by 8/3

(8/3) * (3/8x) = (8/3) * (21/2)

Step 3. Calculate

x = 28

7 0
3 years ago
A snail can crawl 2/5 of a meter in a minute. How many minutes will it take the snail to crawl 6 meters? Enter your answer in th
Scorpion4ik [409]

Answer:15 minutes


Step-by-step explanation: 5/2 * 6 = 30/2 = 15


3 0
3 years ago
Read 2 more answers
Other questions:
  • What’s the slope of the line that passes through 5,10 and 7,12
    6·2 answers
  • The diagram represents the net of a triangular prism. Chris wants to find thesurface area.
    9·1 answer
  • What is a rhombus with no right angles then ___________________
    15·1 answer
  • Sabrina wants to paint the walls and ceiling
    6·2 answers
  • Convert <br>431 base 10 divided by 112base 10​
    10·1 answer
  • Please give me the correct answer.​
    7·1 answer
  • If the expression is expanded, what is the coefficient of x?
    10·1 answer
  • Using long division. Find the decimal equivalent of 2/5. What kind of decimal is it ?
    15·2 answers
  • Please helps and say which question you were answering 20+ brainlest to who whoever answers first and right! Thanks
    10·1 answer
  • The operator *= is called a(n) _____ operator.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!