7D%7Bc%7Cc%7D%20%5Cbf%20f%28x%29%20%26%20%5Cbf%20%5Cdisplaystyle%20%5Cint%20%5Crm%20%5C%3Af%28x%29%20%5C%3A%20dx%5C%5C%20%5C%5C%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%26%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%5C%5C%20%5Csf%20k%20%26%20%5Csf%20kx%20%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20sinx%20%26%20%5Csf%20-%20%5C%3A%20cosx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20cosx%20%26%20%5Csf%20%5C%3A%20sinx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bsec%7D%5E%7B2%7D%20x%20%26%20%5Csf%20tanx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bcosec%7D%5E%7B2%7Dx%20%26%20%5Csf%20-%20cotx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20secx%20%5C%3A%20tanx%20%26%20%5Csf%20secx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20cosecx%20%5C%3A%20cotx%26%20%5Csf%20-%20%5C%3A%20cosecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20tanx%20%26%20%5Csf%20logsecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%5Cdfrac%7B1%7D%7Bx%7D%20%26%20%5Csf%20logx%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%26%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%2B%20c%5Cend%7Barray%7D%7D%20%5C%5C%20%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D" id="TexFormula1" title="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" alt="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" align="absmiddle" class="latex-formula">
Answer with proper explanation.
→ Expecting answer from :
★ Moderators
★ Brainly stars and teacher
★ Others best users
1 answer:

Step-by-step explanation:
Am not sure what your question is? But if you are asking about a proof, then you may use Taylor series to prove these integrals...
You might be interested in
It is the Correct answer hope this help you
Be happy
Answer:
The Volume is 660^3.
Step-by-step explanation:
The formula is Length * Width * Height.
22 * 5 * 6 = 660 and its volumed so the units is cubed.
Answer:
$40
Step-by-step explanation:
substitute numbers:
20 + (10x3)
20+30= 40.
Answer:
$6.34
Step-by-step explanation:
15.86 / 2.5 = 6.34
$6.34
4c6d3 x 3c4d
4 x 3=12
12c
you add the powers so 6+4=10
12c10
d3 x d=d3
12c10d3
that is the answer i think