7D%7Bc%7Cc%7D%20%5Cbf%20f%28x%29%20%26%20%5Cbf%20%5Cdisplaystyle%20%5Cint%20%5Crm%20%5C%3Af%28x%29%20%5C%3A%20dx%5C%5C%20%5C%5C%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%26%20%5Cfrac%7B%5Cqquad%20%5Cqquad%7D%7B%7D%20%5C%5C%20%5Csf%20k%20%26%20%5Csf%20kx%20%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20sinx%20%26%20%5Csf%20-%20%5C%3A%20cosx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20cosx%20%26%20%5Csf%20%5C%3A%20sinx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bsec%7D%5E%7B2%7D%20x%20%26%20%5Csf%20tanx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Bcosec%7D%5E%7B2%7Dx%20%26%20%5Csf%20-%20cotx%2B%20c%20%5C%5C%20%5C%5C%20%5Csf%20secx%20%5C%3A%20tanx%20%26%20%5Csf%20secx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20cosecx%20%5C%3A%20cotx%26%20%5Csf%20-%20%5C%3A%20cosecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20tanx%20%26%20%5Csf%20logsecx%20%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%5Cdfrac%7B1%7D%7Bx%7D%20%26%20%5Csf%20logx%2B%20c%5C%5C%20%5C%5C%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%26%20%5Csf%20%7Be%7D%5E%7Bx%7D%20%2B%20c%5Cend%7Barray%7D%7D%20%5C%5C%20%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D" id="TexFormula1" title="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" alt="\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}" align="absmiddle" class="latex-formula">
Answer with proper explanation.
→ Expecting answer from :
★ Moderators
★ Brainly stars and teacher
★ Others best users
1 answer:

Step-by-step explanation:
Am not sure what your question is? But if you are asking about a proof, then you may use Taylor series to prove these integrals...
You might be interested in
45800 is the answer to that question
Answer: The width of the rectangle is 10.2 inches, the perimeter is 71.4 inches, the area is 260.1 inches.
Step-by-step explanation:
25.5/5=5.1
5.1*2=10.2
The width is 10.2 inches
25.5*2+10.2*2=71.4
The perimeter is 71.4 inches
20.5*10.2=260.1
The area is 260.1
The answer should be x = 3