I’m doing this for more questions to ask lamo
8272 82/
Step by a step
Eiwjb wisp a
Answer:
Oxide of M is
and sulfate of 
Explanation:
0.303 L of molecular hydrogen gas measured at 17°C and 741 mmHg.
Let moles of hydrogen gas be n.
Temperature of the gas ,T= 17°C =290 K
Pressure of the gas ,P= 741 mmHg= 0.9633 atm
Volume occupied by gas , V = 0.303 L
Using an ideal gas equation:


Moles of hydrogen gas produced = 0.01225 mol

Moles of metal =
So, 8.3333 mol of metal M gives 0.01225 mol of hydrogen gas.

x = 2.9 ≈ 3


Formulas for the oxide and sulfate of M will be:
Oxide of M is
and sulfate of
.
Metals are the majority of the periodic table. Also, they are on the left side of the periodic table. The no metals are on the right side of periodic table.
Hope I Helped!
Answer:
The reaction D has the value of ΔH°rxn equal to ΔH°f for the product.
Explanation:
The ΔH°f for product is equal to ΔH°rxn when the reagents are in their elemental state (ΔH°f = 0) and form one mole of product.
We have to find the reagents that are in their elemental state and that only form one mole of product:
A) 2Ca (s) + O₂ (g) → 2CaO (s)
The reagents are in their elemental state but the reaction forms two mole of product.
B) C₂H₂ (g) + H₂ (g) → C₂H₄ (g)
C₂H₂ (g) is not in its elemental state.
C) 2C (graphite) + O₂ (g) → 2CO (g)
Graphite and Oxygen are in their elemental state but the reaction forms two mole of product.
D) 3Mg (s) + N₂ (g) → Mg₃N₂ (s)
Magnesium and Nytrogen are in their elemental state and the reaction forms one mole of product.
E) C (diamond) + O₂ (g) → CO₂ (g)
Diamond is not in its elemental state.
If large amounts of waste were dumped into the Missouri River, the dissolved oxygen levels would go down significantly and kill many of the organisms in the river.