This is a linear differential equation of first order. Solve this by integrating the coefficient of the y term and then raising e to the integrated coefficient to find the integrating factor, i.e. the integrating factor for this problem is e^(6x).
<span>Multiplying both sides of the equation by the integrating factor: </span>
<span>(y')e^(6x) + 6ye^(6x) = e^(12x) </span>
<span>The left side is the derivative of ye^(6x), hence </span>
<span>d/dx[ye^(6x)] = e^(12x) </span>
<span>Integrating </span>
<span>ye^(6x) = (1/12)e^(12x) + c where c is a constant </span>
<span>y = (1/12)e^(6x) + ce^(-6x) </span>
<span>Use the initial condition y(0)=-8 to find c: </span>
<span>-8 = (1/12) + c </span>
<span>c=-97/12 </span>
<span>Hence </span>
<span>y = (1/12)e^(6x) - (97/12)e^(-6x)</span>
In a right triangle with 45 degree angles the two sides are the same length. The hypotenuse is the length of the sides x sqrt(2)
The length of x = 3 and y = 3
Answer:

Step-by-step explanation:
We are given the function:

And we want to find F(<em>b</em> + 3).
We can substitute:

Expand:

Rearrange:

Combine like terms. Hence:

In conclusion:
