1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
2 years ago
6

If the equation;(3x)² + {27 × (3)^1/k - 15}x + 4 = 0has equal roots find k​

Mathematics
1 answer:
Dima020 [189]2 years ago
7 0

Step-by-step explanation:

\green{\large\underline{\sf{Solution-}}}

Given quadratic equation is

\rm :\longmapsto\:\rm \:  {(3x)}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

can be rewritten as

\rm :\longmapsto\:\rm \:  {9x}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

<u>Concept Used :- </u>

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Let's Solve this problem now!!!

On comparing with quadratic equation ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a = 9}

\red{\rm :\longmapsto\:b = 27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15}

\red{\rm :\longmapsto\:c = 4}

Since, Discriminant, D = 0

\rm \implies\: {b}^{2} - 4ac = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 4 \times 4 \times 9 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 144 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  = 144

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  =  {12}^{2}

\rm \implies\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 =  \:  \pm \: 12

<u>Case - 1</u>

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = -  12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = -  12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 3

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{9}

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{ {3}^{2} }

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{ - 2}

\rm \implies\:\dfrac{1}{k}  =  - 2

\bf\implies \:k \:  =  \:  -  \: \dfrac{1}{2}

<em>So, option (b) is Correct. </em>

<u>Case - 2</u>

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = 12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 27

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 1

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{0}

\rm \implies\:\dfrac{1}{k}  =0

<em>which is not possible.</em>

You might be interested in
Hello, do you know how I do this?
Taya2010 [7]

Answer:

I think its this

14, 4, 18, 8, 22, 12, 26, 16...


Step-by-step explanation:

14-10

+14

-10

+14

-10

+14

-10

ect.

6 0
3 years ago
Please help!!! ill mark brainliest
Vesnalui [34]

3x - 1 = 3x + 1  

subtract 3x from both sides to get (-1 = 1).  This is a false statement so it is: CONTRADICTION

************************************************

4x - 11 = 7

add 11 to both sides and then divide both sides by 4 to get (x = \frac{18}{4} = \frac{9}{2}).  This statement is true only when x = \frac{9}{2} so it is: CONDITIONAL

*************************************************

2 - 8x = 2 - 8x

add 8x to both sides to get (2 = 2).  This is a true statement so it is: IDENTITY

*************************************************

x + 1 = -x + 4

add x to both sides, subtract 1 from both sides, and divide both sides by 2 to get  (x = \frac{3}{2} ). This statement is true only when x = \frac{3}{2} so it is: CONDITIONAL

Answer: B, A, C, A

6 0
3 years ago
GIVING BRAINLIEST
andriy [413]
D would be the highest value
4 0
3 years ago
Read 2 more answers
Solve the equation: 6x - 8 = 2 + 9x - 1<br> A. 4<br> B. -6<br> C. -2<br> D. -3
madreJ [45]

Answer:

D

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
F(x)=(1÷4)^x Is it and Incease,decrease or constant
Fynjy0 [20]

Answer:

Decrease

Step-by-step explanation:

The general form of exponential functions is a · b^x^-^h +k. If b, or the base with the exponent, is bigger than 1, than the graph increases, experiencing growth. If the base is somewhere between 0 and 1, then the graph decreases, experiencing decay.

\frac{1}{4} is a number in between 0 and 1, thus the graph would decrease.

5 0
3 years ago
Other questions:
  • Is 15 a multiple of each of its factors
    6·1 answer
  • 1 quart of water 1 pint of juice and 9 ounces of honey equals how much total pints, cups, and ounces
    9·1 answer
  • The output is eight more than the input
    12·1 answer
  • What is the answer to P - 11 = -5
    10·1 answer
  • 3x + 8y - 36 = 0
    9·1 answer
  • 4 An angle of a
    5·1 answer
  • Find angle D if angle B = 50
    5·1 answer
  • Need asap- will give brainliest-real answers only or you will be reported
    6·2 answers
  • 60
    8·1 answer
  • The points a b and c are 3 corners of a parallelogram
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!