Answer:
I think the last you already have is right. I wasn’t very good at this but I try
Step-by-step explanation:
Answer: The required derivative is 
Step-by-step explanation:
Since we have given that
![y=\ln[x(2x+3)^2]](https://tex.z-dn.net/?f=y%3D%5Cln%5Bx%282x%2B3%29%5E2%5D)
Differentiating log function w.r.t. x, we get that
![\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [x'(2x+3)^2+(2x+3)^2'x]\\\\\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [(2x+3)^2+2x(2x+3)]\\\\\dfrac{dy}{dx}=\dfrac{4x^2+9+12x+4x^2+6x}{x(2x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{8x^2+18x+9}{x(2x+3)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5Bx%27%282x%2B3%29%5E2%2B%282x%2B3%29%5E2%27x%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5B%282x%2B3%29%5E2%2B2x%282x%2B3%29%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B4x%5E2%2B9%2B12x%2B4x%5E2%2B6x%7D%7Bx%282x%2B3%29%5E2%7D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B8x%5E2%2B18x%2B9%7D%7Bx%282x%2B3%29%5E2%7D)
Hence, the required derivative is 
Answer:
2/3 (0,-3) is one possible answer.
Step-by-step explanation:
y -1 = 2/3(x-6) We want to get this into the slope intercept form of a line. We want it to be in the form y = mx + b. Let's clear the fraction first by multiplying the whole equation through by 3.
3(y - 1) = 3[2/3(x - 6)]
3y -3 = 2(x -6)
3y - 3 = 2x -12
3y = 2x - 9 Now divide all the way through by 3 to get
y = 2/3x - 3
y = mx + b. The m part is the slope. In this equation the slope is 2/3
There are in infinite amount of points on a line. I do not know if they give you a picture or if you are just to create your own. I am going to create a point that have x = 0. I get to pick the point. I could pick any number. 0 is just usually really easy. So, if I substitute 0 for x I will get:
y = 2/3(0) - 3
y = 1 so my point is (0,-3)
Now that I think about it, I do not think that I would start out clearing the fraction even though it works. I think that I would do it like this"
y - 1 = 2/3(x - 6) Distribute the 2/3 through (x - 4) to get
y-1 = 2/3x -4 I can make -6 a fraction by putting it over 1. Now we have 2/3(-6/1) multiply across to get -12/3. A positive times a negative is a negative. -12 divided by 3 is -4.
y - 1 = 2/3x -4 now add 1 to both sides.
y = 2/3x -3
Answer:
John spent around $53
Step-by-step explanation:
The equation is 3x=160
Since the "x" is already by itself on one side, divide 160 by 3
160÷3=53.333⇒
Now if that's not the way IT CAN ALSO BE:
30x3+70=160! That means John spent $90
Answer:
2^2 ( 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44,48
3^2(1,2,3, 5) = 9, 18, 27, 45
5^2(1, 2) = 25, 50
7^2 = 49
19 numbers
Step-by-step explanation: