First, draw a circle with point U as the center point and point S as the end of the radius. Then, draw another circle with point D as the center point and the radius length equal to US. Next, draw ray DE away from angle SUN. Finally, draw angle SUN.
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution/u-solve</em>.
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Derivative Rules and Properties]:

- [<em>du</em>] Rewrite [U-Solve]:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Apply U-Solve:

- [Integrand] Simplify:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Apply Integration Rule [Reverse Power Rule]:

- [<em>u</em>] Back-substitute:

∴ we have used u-solve (u-substitution) to <em>find</em> the indefinite integral.
---
Learn more about integration: brainly.com/question/27746495
Learn more about Calculus: brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
17/30, The peanuts by a dollar per pound (peanuts cost $3, walnuts cost $2), $21, 40072/100 (and I'm not sure how you would reduce it) Good luck!
Answer:
degree of vertex B = 2
degree of vertex g = 4
Step-by-step explanation:
Using given picture we need to find about what is the degree of vertex B and G.
In graph theory, we know that the degree (or valency) of a vertex of a graph is the number of edges incident to the vertex.
So we just need to count how many edges are incindent on vertex B and G.
From picture we see that number of edges incident on vertex B = 2
Hence degree of vertex B = 2
From picture we see that number of edges incident on vertex G = 4
Hence degree of vertex g = 4
Answer:
kkkkkkkk
Step-by-step explanation: