Given the total number of students are 180, the mean of data is 88g, and standard deviation is 1g.
A normal curve is a bell-shaped curve with symmetry about the mean and it spreads uniformly on both sides (left side and right side) of the mean.
The empirical rule is also called "68-95-99.7" rule. It says that :-
A) 68% of the data values fall between 1 standard deviation about mean (34% on left side and 34% on right side),
B) 95% of the data values fall between 2 standard deviations about mean (47.5% on left side and 47.5% on right side), and
C) 99.7% of the data values fall between 3 standard deviations about mean (49.85% on left side and 49.85% on right side).
According to distribution of normal curve and "68-95-99.7" empirical rule, we can say 49.85% of data values are above the mean within 3 standard deviations.
So it means 49.85% of total students report readings more than 88g.
Number of students reporting readings more than 88g = 49.85% of 180 = 0.4985 × 180 = 89.73
Hence, approximately 89 students report readings more than mean value.
Joe is telling the truth because why would he lie about how many students were there?
Step-by-step explanation:
<em>Given </em><em>points </em><em>(</em><em>-</em><em>1</em><em>7</em><em> </em><em>,</em><em> </em><em>1</em><em>7</em><em>)</em><em> </em><em>and </em><em>(</em><em> </em><em>7</em><em> </em><em>,</em><em> </em><em>1</em><em>7</em><em>)</em>
<em>Now </em><em>slope </em><em>(</em><em>m</em><em>) </em>
<em>=</em><em> </em><em>(</em><em>y2 </em><em>-</em><em> </em><em>y1) </em><em> </em><em>/</em><em> </em><em>(</em><em>x2 </em><em>-</em><em> </em><em>x1) </em>
<em>=</em><em> </em><em>(</em><em> </em><em>1</em><em>7</em><em>-</em><em> </em><em>1</em><em>7</em><em>)</em><em> </em><em>/</em><em> </em><em>(</em><em> </em><em>7</em><em>+</em><em> </em><em>1</em><em>7</em><em>)</em>
<em>=</em><em> </em><em>0</em><em>/</em><em> </em><em>2</em><em>4</em>
<em>=</em><em> </em><em>0</em>
Think about this, f(x) -> f(3). Look at the chart, x is 3. What number is directly to the right of 3. Your answer is 9.