Answer:
1)
- frequencies of light-colored mice ≅ 0.74
- frequencies of dark-colored mice ≅ 0.26
2)
- frequencies of light-colored mice ≅ 0.13
- frequencies of dark-colored mice ≅ 0.87
3)
- q² = 0.74
- p² = 0.02
- 2pq = 0.24
4)
- q² = 0.13
- p² = 0.4
- 2pq = 0.46
5)
The dark-colored fur seems to have the greatest overall selective advantage
6)
Dark lava, that changed the color of the substrate, from light to dark.
7)
Because to produce dark color, animals from the different regions suffered different mutations that drove them to have almost the same dark fur color. All of the animals are inhabiting dark substrate, which means that this environmental condition is favoring the same phenotype.
8)
To see if the mice population is evolving, you need to take a sample of animals per year, through many years, and analyze if it is changing or not. If the population is evolving, you will notice a change in the allelic and genotypic frequencies over the years, favoring one genotype or the other. If the population is not evolving, the frequencies will keep equal through the years, it will not change.
Explanation:
Due to technical problems, you will find the complete explanation in the attached files.
Vacuole is the answer.
Wilting is the loss of rigidity of non woody parts of plants and occurs when turgor pressure falls.
The vacuole controls turgor pressure. Turgor pressure dictates the rigidity of the cell and is associated with the difference between the osmotic pressure inside and outside the cell.
When a plant receives adequate amounts of water, the central vacuoles of its cells swell as the liquid collects within them creating a high level of turgor pressure which helps maintain the structural integrity of the plant along with the support of the cell wall.
In the absence of enough water , central vacuoles shrink and turgor pressure is reduced compromising the plant's rigidity so that wilting takes place.
Lead I believe would be the heaviest because gold is relatively light
A tornado is a violently rotating column of air extending from the base of a thunderstorm to the ground, often made visible by a condensation funnel. The formation of tornadoes<span> is complicated. So the answer would be A
</span>