Answer:
you divide 13 by four and you get 3 and a quarter. thats your answer
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
I believe the correct answer from the choices listed above is option A. Given a segment with endpoints A and B and the steps given above, the figure that you can construct would be a perpendicular bisector. <span>The </span>perpendicular bisector<span> of a line segment can be constructed using a compass by drawing circles centered at and with radius and connecting their two intersections.</span>
4.80/(3/4) = 6.4 per pound
8.2 * 6.4 = $52.48
Solution: $52.48 for 8.2 pounds
$3.00 x .05 = 15 cents
$3.00+ .15= $3.15
3.15 final answer