9514 1404 393
Answer:
a) average rate = (total distance)/(total time)
b) Rave = 2·R1·R2/(R1 +R2)
c) cheetah's average rate ≈ 50.91 mph
Step-by-step explanation:
a) Let AB represent the distance from A to B. Let t1 and t2 represent the travel times (in hours) on leg1 and leg2 of the trip, respectively. Then the distances traveled are...
First leg distance: AB = 70·t1 ⇒ t1 = AB/70
Second leg distance: AB = 40·t2 ⇒ t2 = AB/40
The average rate is the ratio of total distance to total time:
average rate = (AB +AB)/(t1 +t2)
average rate = 2AB/(AB/70 +AB/40) = 2/(1/70 +1/40) = 2(40)(70)/(70+40)
average rate = 560/11 = 50 10/11 . . . mph
__
No equations are given, so we cannot compare what we wrote with the given equations. In each step of the solution, we have used the rules of algebra and equality.
b) For two rates over the same distance (as above), the average is their harmonic mean:
average rate = 2r1·r2/(r1+r2)
__
c) The cheetah's average rate was 50 10/11 mph ≈ 50.91 mph.
Answer:
uhm no stop this is an app for people and work so please go
Answer: 2584
Step-by-step explanation:
We can find N with 2584 and 4181.
4181 - 2584
= 1597
We can also check our answer by adding 1597 and 987
1597 + 987
= 2584
Proving a relation for all natural numbers involves proving it for n = 1 and showing that it holds for n + 1 if it is assumed that it is true for any n.
The relation 2+4+6+...+2n = n^2+n has to be proved.
If n = 1, the right hand side is equal to 2*1 = 2 and the left hand side is equal to 1^1 + 1 = 1 + 1 = 2
Assume that the relation holds for any value of n.
2 + 4 + 6 + ... + 2n + 2(n+1) = n^2 + n + 2(n + 1)
= n^2 + n + 2n + 2
= n^2 + 2n + 1 + n + 1
= (n + 1)^2 + (n + 1)
This shows that the given relation is true for n = 1 and if it is assumed to be true for n it is also true for n + 1.
<span>By mathematical induction the relation is true for any value of n.</span>
Answer:
x=-2
Step-by-step explanation:
