To solve this we are going to use the future value of annuity ordinary formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of payments per year

is the number of years
We know for our problem that

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%:

Since the deposit is made semiannually, it is made 2 times per year, so

.
Since the type of the annuity is ordinary, payments are made at the end of each period, and we know that we have 2 periods, so

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{kt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bkt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=6200[ \frac{(1+ \frac{0.06}{2} )^{(2)(5)} -1}{ \frac{0.06}{2} } ]](https://tex.z-dn.net/?f=FV%3D6200%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.06%7D%7B2%7D%20%29%5E%7B%282%29%285%29%7D%20-1%7D%7B%20%5Cfrac%7B0.06%7D%7B2%7D%20%7D%20%5D)
We can conclude that the correct answer is <span>
$71,076.06</span>
Answer: Just do 2355
Step-by-step explanation: its that
Answer:
24 picture frames
Step-by-step explanation:
Since a student takes 1/6 hour to paint a picture frame, so in an hour, the student will paint a total of 6 picture frames. So to find the number of picture frames in 4 hours, you just need to multiply 4*6 to get 24 picture frames.
Answer:
not a function
Step-by-step explanation:
3 - 2 = 1
2 - 5 = -3
5-6 = -1
6-7 = -1
Lol, I'm just answering that question right now. I haven't turned it in yet, but I believe the answer is true as all the sides of an equilateral triangle are equal.