Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
Yes and no. A negative number and it's opposite are 'integers.' Yes, a negative and a negative multiplied together give you a positive. The two negative signs cancel out making it positive. But no, a positive and a positive multiplied together do not give you a negative. When you subtract positive numbers you can get a negative, but not when multiplying. If you were to do a positive times a negative it would be negative because the positive can't cancel it out. Example: -3 · -3 = 9. [] 3 · 3 = 9. [] -3 · 3 = -9. Other than the positive number part, the statement is true about the negatives. I hope that helped!
Answer:
2x-y=4
Step-by-step explanation:
y=mx+b
b is the y-intercept which is -4
y=mx-4
find m(slope)
(2,0) and (0,-4)
(-4-0)/(0-2)
-4/-2=2 m=2
y=2x-4
add 4 to both sides
y+4=2x subtract y
4=2x-y
It says write in standard form which looks like this: 3x + 5y = 4
Answer:

Step-by-step explanation:
The slope formula is 
Here,
is -6,
is 4,
is -5, and
is 4.


So, the slope of the line passing through the points (-6,-5) and (4,4) is
.
Answer:
1. List the first several multiples of each number.
Look for multiples common to both lists. ...
Look for the smallest number that is common to both lists.
This number is the LCM.
Find the GCF for the two numbers.
Divide that GCF into the either number; it doesn't matter which one you choose, so choose the one that's easier to divide.
Take that answer and multiply it by the other number.
Step-by-step explanation:
Hope this helps!