Answer:
The probability that p is in the interval is equal to the level of confidence for the interval.
Explanation:
This is not a correct statement. The level of confidence is not equal to the probability that p is in the interval.
Each of these ODEs is linear and homogeneous with constant coefficients, so we only need to find the roots to their respective characteristic equations.
(a) The characteristic equation for

is

which arises from the ansatz
.
The characteristic roots are
and
. Then the general solution is

where
are arbitrary constants.
(b) The characteristic equation here is

with a root at
of multiplicity 2. Then the general solution is

(c) The characteristic equation is

with roots at
, where
. Then the general solution is

Recall Euler's identity,

Then we can rewrite the solution as

or even more simply as

Answer:
I don't know answer of this question
Explanation:
I don't know answer of this question