1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
15

the scale of a map says that 4 cm represents5 km.What distance on the map in centimeters represents an actual distance of 4 kilo

meters
Mathematics
1 answer:
vladimir1956 [14]3 years ago
5 0

Answer:

3.2 cm

Step-by-step explanation:

If we know that our ratio is 4 cm: 5 km. We can find the unit rate of the scale. Which would be 0.8 cm: 1 km. After we find the unit ratio we can then multiply both sides by 4. (4 * 0.8) : (4*1) After simplifying we get the ratio of 3.2cm: 4 km.

You might be interested in
Evaluate the integral. (remember to use absolute values where appropriate. Use c for the constant of integration.) 5 cot5(θ) sin
ozzi

I=5\int \frac{cos^{4}\theta }{sin\theta }\times cos\theta d\theta \\\\I=5\int \left ( 1-sin^{2}\theta  \right )^{2}\times \frac{cos\theta }{sin\theta }d\theta \\put\ \sin\theta =t\\\\dt=cos\theta d\theta \\\\I=5\int\frac{t^{4}+1-2t^{2}}{t}dt\ \ \ \ \ \ \ \ \ \ \because (a-b)^2=a^2+b^2-2ab\\\\I=5\left ( \int t^{3}dt + \int \frac{1}{t} -2\int t \right )dt

by using the integration formula

we get,

\\I=5\left ( \frac{t^{4}}{4} +logt -t^{2}\right )\\\\I=\frac{5}{4}t^{4}+5\log t-5t^{2}+c

now put the value of t=\sin\theta in the above equation

we get,

\int 5\cot^5\theta \sin^4\theta d\theta=\frac{5}{4}sin^{4}\theta+5\log \sin\theta - 5sin^{2} \theta+c

hence proved

7 0
3 years ago
If you want to buy an item in a store that costs $50 and is on sale for 10% off, then how much would the item actually cost you
SCORPION-xisa [38]

Answer: The item would be 45 dollars.

Step-by-step explanation:

4 0
4 years ago
Read 2 more answers
What is 2819 divided by 55
MaRussiya [10]

Answer:

51.2545454545

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
EXAMPLE 5 Find the maximum value of the function f(x, y, z) = x + 2y + 11z on the curve of intersection of the plane x − y + z =
Taya2010 [7]

Answer:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

<em>Maximum value of f=2.41</em>

Step-by-step explanation:

<u>Lagrange Multipliers</u>

It's a method to optimize (maximize or minimize) functions of more than one variable subject to equality restrictions.

Given a function of three variables f(x,y,z) and a restriction in the form of an equality g(x,y,z)=0, then we are interested in finding the values of x,y,z where both gradients are parallel, i.e.

\bigtriangledown  f=\lambda \bigtriangledown  g

for some scalar \lambda called the Lagrange multiplier.

For more than one restriction, say g(x,y,z)=0 and h(x,y,z)=0, the Lagrange condition is

\bigtriangledown  f=\lambda \bigtriangledown  g+\mu \bigtriangledown  h

The gradient of f is

\bigtriangledown  f=

Considering each variable as independent we have three equations right from the Lagrange condition, plus one for each restriction, to form a 5x5 system of equations in x,y,z,\lambda,\mu.

We have

f(x, y, z) = x + 2y + 11z\\g(x, y, z) = x - y + z -1=0\\h(x, y, z) = x^2 + y^2 -1= 0

Let's compute the partial derivatives

f_x=1\ ,f_y=2\ ,f_z=11\ \\g_x=1\ ,g_y=-1\ ,g_z=1\\h_x=2x\ ,h_y=2y\ ,h_z=0

The Lagrange condition leads to

1=\lambda (1)+\mu (2x)\\2=\lambda (-1)+\mu (2y)\\11=\lambda (1)+\mu (0)

Operating and simplifying

1=\lambda+2x\mu\\2=-\lambda +2y\mu \\\lambda=11

Replacing the value of \lambda in the two first equations, we get

1=11+2x\mu\\2=-11 +2y\mu

From the first equation

\displaystyle 2\mu=\frac{-10}{x}

Replacing into the second

\displaystyle 13=y\frac{-10}{x}

Or, equivalently

13x=-10y

Squaring

169x^2=100y^2

To solve, we use the restriction h

x^2 + y^2 = 1

Multiplying by 100

100x^2 + 100y^2 = 100

Replacing the above condition

100x^2 + 169x^2 = 100

Solving for x

\displaystyle x=\pm \frac{10}{\sqrt{269}}

We compute the values of y by solving

13x=-10y

\displaystyle y=-\frac{13x}{10}

For

\displaystyle x= \frac{10}{\sqrt{269}}

\displaystyle y= -\frac{13}{\sqrt{269}}

And for

\displaystyle x= -\frac{10}{\sqrt{269}}

\displaystyle y= \frac{13}{\sqrt{269}}

Finally, we get z using the other restriction

x - y + z = 1

Or:

z = 1-x+y

The first solution yields to

\displaystyle z = 1-\frac{10}{\sqrt{269}}-\frac{13}{\sqrt{269}}

\displaystyle z = \frac{-23\sqrt{269}+269}{269}

And the second solution gives us

\displaystyle z = 1+\frac{10}{\sqrt{269}}+\frac{13}{\sqrt{269}}

\displaystyle z = \frac{23\sqrt{269}+269}{269}

Complete first solution:

\displaystyle x= \frac{10}{\sqrt{269}}\\\\\displaystyle y= -\frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{-23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=-0.4

Complete second solution:

\displaystyle x= -\frac{10}{\sqrt{269}}\\\\\displaystyle y= \frac{13}{\sqrt{269}}\\\\\displaystyle z = \frac{23\sqrt{269}+269}{269}

Replacing into f, we get

f(x,y,z)=2.4

The second solution maximizes f to 2.4

5 0
3 years ago
A copy machine can print 340 color copies every 8 minutes. Explain or show your reasoning.
mylen [45]

Step-by-step explanation:

340=8min

850=?(x)

340x=850×8

340x=6800

x=6800/340

x=20min

so..the teachertook 20 minute to print 850 copies

3 0
3 years ago
Read 2 more answers
Other questions:
  • If 10 sweets cost 130 pounds how much do 13 sweets cost?
    12·2 answers
  • How do three planes intersect at one point?
    7·1 answer
  • Natalie drinks 2 pints of milk each day. How many days does it take her to drink 1 gallon of milk? PLZ HELP
    9·1 answer
  • solve this equation. Does the equation have one solution, no solution, or infinitely many solutions use the drop-down menus to e
    11·2 answers
  • What is 12 and 19 /20 as a decimal?
    13·2 answers
  • What is x given angle ABC~ angle DBE~ ?
    14·2 answers
  • A restaurant uses 28 bottles of cooking oil in 3 days . How many bottles are needed for 14 days
    11·1 answer
  • Hellllllllllllllllllllp
    12·1 answer
  • I need help on 13, i have the answer but am not sure how to solve please help
    11·2 answers
  • Find the equation of a circle with center at (5, 6) and radius 8.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!