The answer to the questions of volumes are given as follows
a) 
b) 
c)
d)
Generally, the questions are mathematically solved below

a) x-axis
if $y=4, x=16, x=0$
Using disk method




b) line y=4
if x=0, y=0 ;

Using shell method


![v=2 \pi\left[\frac{4 y^{3}}{3}-\frac{y^{4}}{4}\right]_{0}^{4} \\](https://tex.z-dn.net/?f=v%3D2%20%5Cpi%5Cleft%5B%5Cfrac%7B4%20y%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7By%5E%7B4%7D%7D%7B4%7D%5Cright%5D_%7B0%7D%5E%7B4%7D%20%5C%5C)
![v=\frac{2 \pi}{12}[1024-768] \\](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B2%20%5Cpi%7D%7B12%7D%5B1024-768%5D%20%5C%5C)


c) y-axis
0 ≤ y ≤ 4
x=y^2
Using disk method
volume



d) line x=-1
y=√x, y=4, x=0
0 ≤ x ≤ 6
Using shell method
volume is


![V=2 \pi\left[\frac{x^{3 / 2}}{3 / 2}+\frac{x^{5 / 2}}{5 / 2}\right]_{0}^{16} \\](https://tex.z-dn.net/?f=V%3D2%20%5Cpi%5Cleft%5B%5Cfrac%7Bx%5E%7B3%20%2F%202%7D%7D%7B3%20%2F%202%7D%2B%5Cfrac%7Bx%5E%7B5%20%2F%202%7D%7D%7B5%20%2F%202%7D%5Cright%5D_%7B0%7D%5E%7B16%7D%20%5C%5C)
![V=2 \pi\left[2 / 3 \cdot\left(4^{2}\right)^{3 / 2}+2 / 5\left(4^{2}\right)^{5 / 2}\right] \\](https://tex.z-dn.net/?f=V%3D2%20%5Cpi%5Cleft%5B2%20%2F%203%20%5Ccdot%5Cleft%284%5E%7B2%7D%5Cright%29%5E%7B3%20%2F%202%7D%2B2%20%2F%205%5Cleft%284%5E%7B2%7D%5Cright%29%5E%7B5%20%2F%202%7D%5Cright%5D%20%5C%5C)





Read more about volumes
brainly.com/question/1578538
#SPJ1
Answer:
4!
Step-by-step explanation:
Hope this helped
Answer:
125
Step-by-step explanation:
Area of trapezoid = 
Bases = 11 and 14
(11+14)=25
25/2=12.5
12.5 x 10 = 125
Answer:
a) the point is on the line
b) the lines are the same line
Step-by-step explanation:
a) The distance from a point to a line is zero when the point satisfies the equation of the line. That is, the point is on the line.
b) Two lines are zero distance apart when they are on top of each other, indistinguishable. That is, they are the same line.
Answer:
w = 
Step-by-step explanation:
The question is 
We can first use distributive property to simplify, the distributive property is 
Thus we have:

<em>Now we combine like terms and simplify to get the final answer for w</em><em>.</em>

Thus, w = 