The kinetic energy of the bowling ball with the mass and traveling at the given velocity is 10.14 Joules.
<h3>
What is Kinetic Energy?</h3>
Kinetic energy is simply a form of energy a particle or object possesses due to its motion.
It is expressed as;
K = (1/2)mv²
Where m is mass of the object and v is its velocity.
Given that;
- Mass of the bowling ball m = 3kg
- Velocity of the bowling ball v = 2.6m/s
We substitute the given values into the above equation.
K = (1/2)mv²
K = 0.5 × 3kg × (2.6m/s)²
K = 0.5 × 3kg × 6.76m²/s²
K = 10.14kgm²/s²
K = 10.14J
Therefore, the kinetic energy of the bowling ball with the mass and traveling at the given velocity is 10.14 Joules.
Learn more about kinetic energy here: brainly.com/question/12669551
#SPJ1
Step-by-step explanation:
vol =πr²h
22/7×8×8×3
= 603.2
7/8 because 3/4 = 6/8, and 7/8 is bigger than 6/8
Answer:
3 times x = 16
Step-by-step explanation:
Answer: the probability that a measurement exceeds 13 milliamperes is 0.067
Step-by-step explanation:
Suppose that the current measurements in a strip of wire are assumed to follow a normal distribution, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = current measurements in a strip.
µ = mean current
σ = standard deviation
From the information given,
µ = 10
σ = 2
We want to find the probability that a measurement exceeds 13 milliamperes. It is expressed as
P(x > 13) = 1 - P(x ≤ 13)
For x = 13,
z = (13 - 10)/2 = 1.5
Looking at the normal distribution table, the probability corresponding to the z score is 0.933
P(x > 13) = 1 - 0.933 = 0.067