The distance formula is an algebraic expression used to determine the distance between two points with the coordinates (x1, y1) and (x2, y2).
<span><span>D=<span><span>(<span>x2</span>−<span>x1</span><span>)2</span>+(<span>y2</span>−<span>y1</span><span>)2</span></span><span>−−−−−−−−−−−−−−−−−−</span>√</span></span><span>D=<span>(<span>x2</span>−<span>x1</span><span>)2</span>+(<span>y2</span>−<span>y1</span><span>)2</span></span></span></span>
Example
Find the distance between (-1, 1) and (3, 4).
This problem is solved simply by plugging our x- and y-values into the distance formula:
<span><span>D=<span><span>(3−(−1)<span>)2</span>+(4−1<span>)2</span></span><span>−−−−−−−−−−−−−−−−−−</span>√</span>=</span><span>D=<span>(3−(−1)<span>)2</span>+(4−1<span>)2</span></span>=</span></span>
<span><span>=<span><span>16+9</span><span>−−−−−</span>√</span>=<span>25<span>−−</span>√</span>=5</span><span>=<span>16+9</span>=25=5</span></span>
Sometimes you need to find the point that is exactly between two other points. This middle point is called the "midpoint". By definition, a midpoint of a line segment is the point on that line segment that divides the segment in two congruent segments.
If the end points of a line segment is (x1, y1) and (x2, y2) then the midpoint of the line segment has the coordinates:
<span><span>(<span><span><span>x1</span>+<span>x2</span></span>2</span>,<span><span><span>y1</span>+<span>y2</span></span>2</span>)</span><span><span>(<span><span><span>x1</span>+<span>x2</span></span>2</span>,<span><span><span>y1</span>+<span>y2</span></span>2</span>)</span><span>
</span></span></span>
Hello there!
8 - 2x = -8x + 14
Let's start by subtracting 8 to both sides
8 - 2x - 8 = -8x + 14 - 8
-2x = -8x + 6
Let's add 8x to both sides
-2x + 8x = -8x + 6 +8x
6x = 6
Divide both sides by 6
6x/6 = 6/6
x = 1
The correct answer is option D
I hope this helps!
Answer:
<h2>
9.8</h2>
Step-by-step explanation:
Brainliest please!
Let the integers be 2n-1 and 2n+1. Their sum is 4n=-116, n=-29.
The integers are -59 and -57.