Check the picture below.
now, we're making an assumption that, the two blue shaded region are equal in shape, and thus if that's so, that area above the 14 is 6 and below it is also 6, 14 + 6 + 6 = 26.
so hmm if we simply get the area of the trapezoid and subtract the area of the yellow triangle and the area of the cyan triangle, what's leftover is what we didn't subtract, namely the shaded region.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h~~=height\\ a,b=\stackrel{parallel~sides}{bases~\hfill }\\[-0.5em] \hrulefill\\ h=15\\ a=14\\ b=26 \end{cases}\implies A=\cfrac{15(14+26)}{2}\implies A=300 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\stackrel{trapezoid}{300}~~ - ~~\stackrel{yellow~triangle}{\cfrac{1}{2}(26)(9)}~~ - ~~\stackrel{cyan~triangle}{\cfrac{1}{2}(15)(6)}} \\\\\\ 300~~ - ~~117~~ - ~~45\implies 138\qquad \textit{blue shaded area}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h~~%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases~%5Chfill%20%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D15%5C%5C%20a%3D14%5C%5C%20b%3D26%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B15%2814%2B26%29%7D%7B2%7D%5Cimplies%20A%3D300%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btrapezoid%7D%7B300%7D~~%20-%20~~%5Cstackrel%7Byellow~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2826%29%289%29%7D~~%20-%20~~%5Cstackrel%7Bcyan~triangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%2815%29%286%29%7D%7D%20%5C%5C%5C%5C%5C%5C%20300~~%20-%20~~117~~%20-%20~~45%5Cimplies%20138%5Cqquad%20%5Ctextit%7Bblue%20shaded%20area%7D)
Answer:
the only one that is a function is B
Step-by-step explanation:
the rest of them have repeating inputs which makes them no functions
Step-by-step explanation:
{(2)³}⁸×{(2)³}-⁵
2²⁴× 2-¹⁵
2²⁴-¹⁵. ( subtract 24 and 15)
2⁹= 512
So...
8×8×8= 512
hence
8³ Answer
Answer:
Step-by-step explanation:
2x^2-6x+10=0
2(x^2-3x)+10=0
2(x-(3/2))^2-9/4)+10=0
2(x-(3/2))^2+10-9/2=0
2(x-(3/2))^2+(20-9)/2=0
2(x-(3/2))^2+11/2=0
2(x-(3/2))^2=-11/2
square is always positive so there is no solution
The best estimate for the quotient of 198.32 divided by 9.001 is 20. Because if you calculate the equation, the exact answer would be 22.0331074325. The number among the choices which is closest to the exact quotient is 20. Therefore, the answer is letter C. 20.