1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
3 years ago
10

Round 5.456 to the nearest tenth of a mile.

Mathematics
1 answer:
Blababa [14]3 years ago
5 0
5. 4 is in the tenths place and it is under 5 so it rounds down to 5
You might be interested in
Which of the following systems of inequalities has point D as a solution?<br> f(x) = 3x+4
Alex73 [517]

I think is this one
8 0
4 years ago
Richard estimates that he can apply fertilizer to 4,486 square feet of grass in 3/4 hour. How many square feet of grass can Rich
Scrat [10]
( PLEASE GIVE BRAINLIEST) 4,486/1 and 3/4 I would do division and use the butterfly method which gets you 1121.5/3 simplified to 373.83 feet per hour
3 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Please help!! <br>if you can explain if not that is fine.<br>​
Scorpion4ik [409]

Answer:

  • The graph of y > 3x − 4 has shading above a dashed line.
  • The graphs of the inequalities will intersect.

6 0
3 years ago
2- ( - 4 ) + 3 (- 6 ) -2 =
Drupady [299]
Ka aahuauauquauuahsbsakaiwuwushsbh
5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the sum of the three expressions and choose the correct answer. 2x 2 y 2 - 7xy + 5y 2 8xy - 3y 2 x 2 y 2 + 4y 2
    8·1 answer
  • 6rs — 7bc (-) 9rs — 7bc simplify
    12·1 answer
  • Vitamin D, whether ingested as a dietary supplement or produced naturally when sunlight falls on the skin, is essential for stro
    10·1 answer
  • 6x + 5y = 4<br> - 6x + y = 20
    15·2 answers
  • At the neighborhood Fourth of July party, Mrs. O’Conner plans to serve banana pudding. She plans to make two batches for every 9
    8·1 answer
  • A polygon is regular when all angles are equal and all sides are equal <br><br> True or False
    9·1 answer
  • Sold the proportion.<br><br> 5/16=x/160<br><br> A. 50<br><br> B. 80<br><br> C. 10<br><br> D. 512
    10·1 answer
  • They have a slight preference for flowers, as 60% percent of their plants are flowers and 40% percent are vegetables. They have
    8·1 answer
  • The following is a random sample of the annual salaries of high school counselors in the United States. Assuming that the distri
    6·1 answer
  • Factor completly. do not answer if you dont know it please!! ill give u brainliest
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!