Griffith's experiment worked with two types of pneumococcal bacteria (a rough type and a smooth type) and identified that a "transforming principle" could transform them from one type to another.
At first, bacteriologists suspected the transforming factor was a protein. The "transforming principle" could be precipitated with alcohol, which showed that it was not a carbohydrate. But Avery and McCarty observed that proteases (enzymes that degrade proteins) did not destroy the transforming principle. Neither did lipases (enzymes that digest lipids). Later they found that the transforming substance was made of nucleic acids but ribonuclease (which digests RNA) did not inactivate the substance. By this method, they were able to obtain small amounts of highly purified transforming principle, which they could then analyze through other tests to determine its identity, which corresponded to DNA.
I think its C. The long neck of a giraffe
Nonpoint source pollution is a greater hazard, because scientists are not able to identify a single location the pollution came from. It is harder to find a solution if they are unable to find the source.
Hope this helps!
have a great day.
Answer: Anterograde direction.
Explanation:
Choline acetyltransferase is an enzyme made in the body of a neuron and that needs to be transferred to the axon terminal to perform its function. Its function is to bind acetyl-CoA to choline to form the neurotransmitter acetylcholine.
The movement toward the cell body is called retrograde transport and the movement toward the synapse is called anterograde transport. So, since it is produced in the body of the cell and it has to go to the axon terminals, the choline acetyltransferase is transported in the anterograde direction.
This type of transport is responsible for the movement of organelles such as mitochondria, lipids, synaptic vesicles, proteins from a neuron cell body through the cytoplasm of its axon called the axoplasm. <u>Because axons can sometimes be meters long, neurons cannot rely on diffusion to carry products to the end of their axons</u>. Dynein is a motor protein involved in this retrograde axonal transport. Its light chains bind cargo, and its globular head regions bind the microtubule, "moving forward" along it.