![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=23.9\\ h=100 \end{cases}\implies V=\cfrac{\pi (23.9)^2(100)}{3} \\\\\\ V=\cfrac{57121\pi }{3}\implies V\approx 59816.97\implies \stackrel{\textit{rounded up}}{V=59817} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D23.9%5C%5C%20h%3D100%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%2823.9%29%5E2%28100%29%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20V%3D%5Ccfrac%7B57121%5Cpi%20%7D%7B3%7D%5Cimplies%20V%5Capprox%2059816.97%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7BV%3D59817%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
now, for the second one, we know the diameter is 10, thus its radius is half that or 5.
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=5\\ V=225 \end{cases}\implies 225=\cfrac{\pi (5)^2 h}{3}\implies 225=\cfrac{25\pi h}{3} \\\\\\ \cfrac{225}{25\pi }=\cfrac{h}{3}\implies \cfrac{9}{\pi }=\cfrac{h}{3}\implies \cfrac{27}{\pi }=h\implies 8.59\approx h\implies \stackrel{\textit{rounded up}}{8.6=h}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D5%5C%5C%20V%3D225%20%5Cend%7Bcases%7D%5Cimplies%20225%3D%5Ccfrac%7B%5Cpi%20%285%29%5E2%20h%7D%7B3%7D%5Cimplies%20225%3D%5Ccfrac%7B25%5Cpi%20h%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B225%7D%7B25%5Cpi%20%7D%3D%5Ccfrac%7Bh%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B%5Cpi%20%7D%3D%5Ccfrac%7Bh%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B27%7D%7B%5Cpi%20%7D%3Dh%5Cimplies%208.59%5Capprox%20h%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B8.6%3Dh%7D)
Answer:
6p
Step-by-step explanation:
9p - 3p needs to have the like terms combined. 9 - 3 is 6, and since you have to keep the p, the answer is 6p.
Answer:
5
Step-by-step explanation:
distribute the negative
5*3 + 5(-2)
15-10
5
Answer:
The correct solution set is a point in Quadrant II.
Step-by-step explanation:
You can see that if you extend the lines, they will eventually intersect at only one point. The quadrants start with I in the upper right corner, go II in the upper left corner, III in the bottom left corner, and IV in the bottom right corner. You can see that they will eventually intersect in the upper left corner, Quadrant II.