Given:
m∠B = 44°
Let's find the following measures:
m∠A, m∠BCD, m∠CDE
We have:
• m∠A:
Angle A and Angle B are interior angles on same side of a transversal.
The interior angles are supplementary.
Supplementary angles sum up to 180 degrees
Therefore, we have:
m∠A + m∠B = 180
m∠A + 44 = 180
Subtract 44 from both sides:
m∠A + 44 - 44 = 180 - 44
m∠A = 136°
• m,∠,BCD:
m∠BCD = m∠A
Thus, we have:
m∠BCD = 136°
• m∠CDE:
Angle C and angle CDE form a linear pair.
Linear pair of angles are supplementary and supplementary angle sum up to 180 degrees.
Thus, we have:
m∠D = m∠B
m∠D = 44°
m∠CDE + m∠D = 180
m∠CDE + 44 = 180
Subract 44 from both sides:
m∠CDE + 44 - 44 = 180 - 44
m∠CDE = 136°
ANSWER:
• m∠A = 136°
,
•
,
• m∠BCD = 136°
,
•
,
• m∠CDE = 136°
Answer: the first one
Step-by-step explanation: just trust me ;)
Answer:
328 feet
Step-by-step explanation:
From a boat ont he lake, the angle of elevation to the top of a cliff is 11° 50'. If the base of the cliff is 1568 feet from the boat, how high is the cliff (to the nearest foot)
Step 1
Note that
that 11°50' is just 11 degrees and 50 minutes
60 minutes = 1 degree,
thus 50 minutes = x degree
50/60 degrees
= 0.83°
Hence: 11°50' = 11.83°.
Step 2
We solve using Trigonometric function of tan
tan theta = Opposite/Adjacent
theta = 11.83°
Adjacent = 1568 feet
Opposite = Height of the cliff = x
tan 11.83° = x/1568
Cross Multiply
x = tan 11.83 × 1568
x = 328.429195 feet
Approximately = 328 feet
The height of the cliff is 328 feet
Answer:
longest side=3.6
let ratio 3:5:6:9be 3x,5x,6xand9x
perimeter= sum of all side
9.2=3x+5x+6x+9x
9.2=23x
x=9.2÷23
x=0.4
9x=9×0.4=3.6
6x=6×0.4=2.4
5x=5×0.4=2
3x=3×0.4=1.2
Answer:
A. Cylinder + cone
<u>Volume is the sum of volumes:</u>
- V = Vcon + Vcyl = 1/3πr²h₁ + πr²h₂
- V = 1/3π*9²*12 + π*9²*120 = 31554.2 cm³
<u>Surface area of cone:</u>
- A = A=πr(r+√(h₁²+r²)) = π*9(9 + √(9²+12²)) = 678.6 cm²
<u>Surface area of cylinder minus bases:</u>
- A = 2πrh₂ = 2π*9*120 = 6785.8 cm²
<u>Total surface area:</u>
- 678.6 + 6785.8 = 7464.4 cm²
-------------------------------------------------
B. Cube+ pyramid
<u>Volume:</u>
- V = a³ + (1/3)a²h = a³ + (1/3)a²√(l²-(a/2)²)
- V = 8³ + (1/3)8²√(10²-4²) = 707.5 cm³
<u>Surface area of pyramid:</u>
- A = a² + 2al = 8² + 2*8*10 = 224 cm²
<u>Surface area of cube minus bases:</u>
- A = 4a² = 4(8²) = 256 cm²
<u>Total surface area:</u>