First find the new coordinates for P and Q after the translations:
P'(2 + 3, 4 - 4) = P'(5, 0)
Q'(-3 + 3, 2 - 4) = Q'(0, -2)
Now, find the slope from this:
(0 - (-2))/(5 - 0) = 2/5
The slope has remained the same. It is important to note that after any translation, the slope will always remain the same. However, this is not always so for rotations and reflections.
Answer:
i dont know it (sad face)
Step-by-step explanation:
first off, let's convert the mixed fraction to improper fraction and then proceed, let's notice that by PEMDAS or order of operations, the multiplication is done first, and then any sums.
![\stackrel{mixed}{1\frac{7}{8}}\implies \cfrac{1\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{15}{8}} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \div \cfrac{1}{2}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \cdot \cfrac{2}{1}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{4} \\\\\\ \cfrac{-3+15}{4}\implies \cfrac{12}{4}\implies 3](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Cdiv%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Ccdot%20%5Ccfrac%7B2%7D%7B1%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-3%2B15%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Cimplies%203)
Answer:
well- you cant buy any pounds-
Step-by-step explanation:
It is irrational because it’s not terminating (please hit “thanks”