Answer: 3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
x
1
)3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
Explanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular lineExplanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular line
Answer: the area of the shaded region is 72.96 ft²
Step-by-step explanation:
The formula for determining the area of a circle is expressed as
Area = πr²
Where
r represents the radius of the circle.
π is a constant whose value is 3.14
From the information given,
Diameter of circle = 16 feet
Radius = diameter/2 = 16/2 = 8 feet
Area of circle = 3.14 × 8² = 200.96ft²
The sides of the square are equal. To determine the length of each side of the square, L, we would apply Pythagoras theorem which is expressed as
Hypotenuse² = opposite side² + adjacent side²
Therefore,
16² = L² + L²
256 = 2L²
L² = 256/2 = 128
L = √128 ft
Area of the square is
L² = (√128)²
Area = 128 ft²
Area of shaded region is
200.96 - 128 = 72.96 ft²
Answer:
m-1
Step-by-step explanation:
The mistake is there is no parenthesis around 4x+12