<h3>
Answer: Largest value is a = 9</h3>
===================================================
Work Shown:
b = 5
(2b)^2 = (2*5)^2 = 100
So we want the expression a^2+3b to be less than (2b)^2 = 100
We need to solve a^2 + 3b < 100 which turns into
a^2 + 3b < 100
a^2 + 3(5) < 100
a^2 + 15 < 100
after substituting in b = 5.
------------------
Let's isolate 'a'
a^2 + 15 < 100
a^2 < 100-15
a^2 < 85
a < sqrt(85)
a < 9.2195
'a' is an integer, so we round down to the nearest whole number to get 
So the greatest integer possible for 'a' is a = 9.
------------------
Check:
plug in a = 9 and b = 5
a^2 + 3b < 100
9^2 + 3(5) < 100
81 + 15 < 100
96 < 100 .... true statement
now try a = 10 and b = 5
a^2 + 3b < 100
10^2 + 3(5) < 100
100 + 15 < 100 ... you can probably already see the issue
115 < 100 ... this is false, so a = 10 doesn't work
Answer:
Part A:
Two types of translation are;
1) Horizontal translation left T(0, 8),
2) Vertical translation T(16, 0)
Part B:
For the horizontal translation transformation, k = 8
For the vertical translation transformation, k = 16
Part C:
For the horizontal translation transformation, the equation is f(x + 8) = g(x)
For the vertical translation transformation, the equation is f(x) + 16 = g(x)
Step-by-step explanation:
Answer:
28°
Step-by-step explanation:
62° + 90° = 152°
180° - 152° = 28°
Stay safe and have a wonderful day! Peace!✌
Answer:
D
Step-by-step explanation:
Answer: 2%, second option is correct.
Step-by-step explanation:
To state 1/50 in percent, divide 1 by 50, then multiply by 100
=( 1 ÷ 50) x 100
= 0.02 x 100
= 2%
I hope this helps, please mark as brainliest.