The correct answer is the status quo.
When translated from Latin, it literally means 'the state in which,' so it refers to the state in which nothing changes, which remains constant all the time, the normal state of affairs. It is a term often used in political or social issues within societies.
* More than 40 proteins and glycoproteins involved in the complement system are synthesized by the liver, macrophages, epithelial cells, they are present in the blood in plasmatic form, membrane, some have an enzymatic activity, regulator or membrane receptorThese are elements of the humoral innate immune response, they fight infections, purify immune complexes and apoptotic bodies.
<span>There are indeed three ways to activate the complement:</span>
Classical pathway: Activated by Immunoglobulins in immune complexes, aggregated Immunoglobulins, DNA, CRP, apoptotic bodies .......it involves nine fractions, starting with C1, then C4, C2, C3, to form a classical C5 convertase, then, activation of C5, C6, C7, C8, C9.
Alternative pathway: activated by polysaccharides (bacterial endotoxin), vascular wall poor in sialic acid, aggregated IgE ...C3b like is the first component in the alternate channel cascade, it will create an amplification loop, and form an alternative C5 convertase.
Lecithin pathway: Activated by mannose, fucose (carbohydrate of microorganisms)The first component is the complex MBL / MASP1 / MASP2: "mannose-binding protein": works according to the same principle as the complex C1 of the classical way (MASP2 cleaves the C4 and the rest of the cascade is equivalent to that of the classical way).
the three ways have the same outcome: A C5 convertase (formed by one of the pathways) cleaves C5 into C5a and C5b: C5b is deposited far from other fractions on the antigenic surface. The fixation of C5b in the cell is followed by that of C6, C7, C8, and C9 (9 molecules of C9): formation of the membrane attack complex (MAC) ==> Death of the cell by osmotic shock
Answer:
The notion of maximum parsimony does not consider the entire evolutionary history, being able to suppress important evolutionary points that would cause errors in the evolutionary relationship of a species.
Explanation:
Maximum parsimony is a criterion for optimizing phylogenetic trees. This is because through this criterion an analysis is made of all possible phylogenetic trees of a species, observing which one is smaller and offers simpler and summary information. On the one hand, the study of the smallest phylogenetic tree can be faster and more understandable, since its information is basic and direct. However, maximum parsimony can lead to errors in the establishment of an evolutionary relationship of a species, because it suppresses the entire history of evolution of that species, being able to suppress really important points in one of the clades, which would result in an incorrect evolutionary conclusion.
<span>Some scientists study the way fossils and living organisms are distributed, or spread out, on the Earth. What is this area of study called? B</span>iogeography