What do you mean by this question?
Explanation:
N2O4(g) <----------> 2NO2(g)
Before proceeding,
A chemical equilibrium can be defined as a condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs.
Statement 1.
This statement is false. Equilibrium is not about equal concentrations but rather zero change in concentration of the reactants and products.
Statement 2.
This statement is True in chemical equilibrium; the forward and reverse reactions occur at equal rates.
Statement 3.
This statement is False. The rate constant for the forward reaction is not equal to the rate constant of the reverse reaction.
Statement 4.
The concentration of NO2 divided by the concentration of N2O4 is NOT equal to a constant. To obtain a constant value irregardless of the concentrations, the concentration of NO2 must be squared. This comes from the stoichiometry of the reaction
Kc= [NO2]2 / [N2O4]
This statement is false.
Explanation:
where are the chemical reactions and their properties to match ?????????
Answer:
Bohr's model explains the spectral lines of the hydrogen atomic emission spectrum. While the electron of the atom remains in the ground state, its energy in uncharged. When the atom absorbs one or more quanta of energy, the electron moves from the ground state orbit to an excited stats orbit that is further away. Energy levels are designated with the variable n. The ground state is n =1, the first excited state is n = 2, and so on. The energy that is gained by the atom is equal to the difference in energy between the two energy levels. When the atom relaxes back to a lower energy state, it releases energy that is again equal to the difference in energy of the two orbits.