To get the ∆S of the reaction, we simply have to add the ∆S of the reactants and the ∆S of the products. Then, we get the difference between the ∆S of the products and the ∆S of the products. If the <span>∆S is negative, then the reaction spontaneous. If the otherwise, the reaction is not spontaneous.</span>
Inert gas does not affect the equilibrium position:
It is because the partial pressures of the reaction components remain the same.
What is Inert Gas?
- Under a given set of conditions, an inert gas is a gas that does not undergo chemical reactions.
- The noble gases (helium, neon, argon, krypton, xenon, and radon) were previously known as "inert gases" due to their perceived lack of involvement in any biochemical processes.
- Because inert gases are non-reactive, they do not affect equilibrium partial pressures and thus do not affect volume.
- An inert gas does not react with the reactants or products; it does not change the concentration of the products and reactants. Furthermore, because the volume is constant, the concentrations are unaffected. As a result, this does not affect equilibrium.
The equilibrium position won't change if an inert gas is added. A volume change won't change the equilibrium position if the total moles of gas in the products and reactants are the same. When the volume is reduced, the process changes to create fewer moles of gas.
Learn more about the inert gas here,
brainly.com/question/15909389
#SPJ4
Answer:
the energy possessed by a body by its value of its position relative to others, stresses within itself, electric charge, and other factors.
Explanation:
Answer:check explanation
Explanation:
(a). HOW THE DISTANCE BETWEEN ELECTRON DONOR AND ACCEPTOR AFFECTS THE RATE OF ELECTRON TRANSFER IN BIOLOGICAL SYSTEM:
Distance between the acceptor and the donor can affect in two ways; short distance and long distance effect.
Short distance causes
electronic orbitals of donor and acceptor directly overlap whereas in LONG DISTANCE reactions this coupling is indirect because of
sequential overlaps of atomic orbitals of the donor, the intervening medium, and the orbitals of the acceptor.
(b). HOW REORGANIZATION ENERGY OF REDOX ACTIVE SPECIE SURROUNDING MEDIUM AFFECTS:
the reorganized energy does not depend on the pre-existing intra molecule electric field. The charge transferred inside the molecule interacts with its aqueous surroundings.
Reorganized energy can be calculated using Poisson-Boltzmann equation.
Alkali metals.
Elements found in group 1 of the periodic table.