Hey there!
Consider 100 g of solution:
Mass of NaCl = 3.50% of mass of seawater
( 3.50 / 100 ) * 100 => 3.50 g
Number of moles as shown below:
Molar mass NaCl = 58.44 g/mol
n = Mass / molar mass
n = 3.50 / 58.44 => 0.059 moles of NaCl
Mass of sweater:
Mass of solution - Mass of NaCl
100 - 3.50 = 96.5 g
96.5 g in Kg :
96.5 / 1000 => 0.0965 Kg
Therefore ,calculate molality by using the following formula:
molality = number of moles of solute / mass of solution
molality = 0.059 / 0.0965
molality = 0.61 m
Hope That helps!
The pH of the diluted HCl solution is 1.3.
Explanation:
Given:
The concentrated HCl solution of 8.0 M. The 1.5 mL of 8.0 M HCl is diluted with water to 250 mL volume.
To find:
The pH of the diluted HCl solution.
Solution
- The concentration of the HCl solution before dilution =

- The volume of the HCl solution taken for dilution =

- The concentration of the HCl solution after dilution =

- The volume of the HCl solution after dilution =

Using the Dilution equation:

The concentration of diluted HCl solution = 0.048 M

In the 1 M solution of HCl, there are 1 M of hydrogen ion, then the concentration of hydrogen ions in 0.048 M of HCl will be:
![[H^+]=1\times 0.048M=0.048 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1%5Ctimes%200.048M%3D0.048%20M)
The pH of the diluted HCl solution :
![pH=-\log [H^+]\\=-\log [0.048M]=1.18 \approx 1.3](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D%5C%5C%3D-%5Clog%20%5B0.048M%5D%3D1.18%20%5Capprox%201.3)
The pH of the diluted HCl solution is 1.3.
Learn more about the dilution equation here:
brainly.com/question/24546169?referrer=searchResults
brainly.com/question/1199928?referrer=searchResults
Answer:
27.03 grams
Explanation:
moles (n) = mass(m)/Molar mass(M)
moles = 1.59
mass = ?
N = 14, H = 1
M(NH3) = 14 + 3(1) = 17
Substitute the values into the equation:
nM = m
∴ m = 1.59 × 17 = 27.03
Answer: V₂ = 37.71mL
Explanation: To determine the new volume of Helium gas, use the Combined Gas Law, which states the following relationship among pressure, volume and temperature:

where index 1 relates to the initial state of the gas and index 2 to the final state of the gas.
Temperature is in Kelvin, so:
T = °C + 273
For this situation, standard pressure is 1 atm. Temperatures will be:
T₁ = 20 + 273 = 293 K
T₂ = 91 + 273 = 364 K
Solving:



37.71
The new volume of He gas is 37.71 mL.