Little Rock is right in the middle of the state so to figure out where the storm will go next you need the direction of the wind
Answer:
its C.specific sequences bases in DNA reproductive cells.
Explanation:
Answer: Proteins are made using DNA as a template. The DNA is turned into RNA, and the RNA is then turned into DNA.
A change in these nucleotides could end up making some part of the protein different. A single nucleotide change could be silent (no change in the protein) or could change a single amino acid (amino acids are the building blocks of proteins). If that was an important amino acid, the protein might not function at all! A silent change can occur because the same set of nucleotides sometimes makes the same final amino acid (for example, reading "gcc" "gca" "gcg" or "gct" nucleotides all mean "alanine" amino acid).
The deletion of a single nucleotide, or the addition of one, can change the entire sequence of amino acids that come after it! Nucleotides are read in sets of three, so this throws off how the DNA is read. If would be like turning "The brown fox jumps over the dog" into "The gbrow nfo xjump sove rth edo g". Completely different! All of the words are thrown off.
I know it is long but I hope it helped
:D
Over the past four decades, researchers have identified many types of oncogenes, including growth factor receptors, transcription factors, and intracellular signaling proteins.
<h3>What are oncogenes?</h3>
These are specific genes in an organism that can cause the formation of cancer. These genes are prone to defects that when activate, signal for a cell to become a tumor. The genes listed in the question are some examples of the types of cells that can be oncogenes.
Therefore, we can confirm that over the past four decades, researchers have identified many types of oncogenes, including growth factor receptors, transcription factors, and intracellular signaling proteins.
To learn more about oncogenes visit:
brainly.com/question/7310602?referrer=searchResults
Answer: In animals, meiosis is directly responsible for the production of sex cells or gametes.
Explanation: