1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
3 years ago
9

What does Newton's second law describe?

Physics
1 answer:
Misha Larkins [42]3 years ago
5 0
B. Newton's second law says that “when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate.”
You might be interested in
The initial and final velocities of two blocks experiencing constant acceleration are respectively −7.45 m/s and 14.9 m/s. (a) T
ikadub [295]

Answer:

a) a_{1}=3.7 m/s^{2}

b) a_{2}=3.68 m/s^{2}

Explanation:

a) The displacement of the first object is 22.5 m, so we can use the next equation:

v_{f}^{2}=v_{i}^{2}+2a\Delta x

a=\frac{v_{f}^{2}-v_{i}^{2}}{2x}

a=\frac{14.9^{2}-(-7.45)^{2}}{2*22.5}

a_{1}=3.7 m/s^{2}

positive acceleration.

b) Using the same equation we can find the second value of the acceleration:

a=\frac{v_{f}^{2}-v_{i}^{2}}{2x}

a=\frac{14.9^{2}-(-7.45)^{2}}{2*22.6}

a_{2}=3.68 m/s^{2}

positive acceleration.

I hope it helps you!

8 0
4 years ago
Which statement is an example of the law of conservation of energy
WITCHER [35]

Answer:

The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. This energy is then used to rotate the turbine of a generator to produce electricity.

Explanation:

6 0
3 years ago
A certain radio wave has a wavelength of 6.0 × 10-2m. What is its frequency in hertz?
rodikova [14]

Answer:

The frequency of the wave is 5 x 10⁹ Hz

Explanation:

Given;

wavelength of the radio wave, λ = 6.0 × 10⁻²m

radio wave is an example of electromagnetic wave, and electromagnetic waves travel with speed of light, which is equal to 3 x 10⁸ m/s².

Applying wave equation;

V = F λ

where;

V is the speed of the wave

F is the frequency of the wave

λ  is the wavelength

Make F the subject of the formula

F = V /  λ

F = (3 x 10⁸) / (6.0 × 10⁻²)

F = 5 x 10⁹ Hz

Therefore, the frequency of the wave is 5 x 10⁹ Hz

8 0
4 years ago
Which approach would be the most interested in studying Phineas Gage
viva [34]
Biological because its studies the function of the brain’s lobes
7 0
3 years ago
How does sound travel?
Doss [256]

Answer:

Sound vibrations travel in a wave pattern, and we call these vibrations sound waves. Sound waves move by vibrating objects and these objects vibrate other surrounding objects, carrying the sound along. ... Sound can move through the air, water, or solids, as long as there are particles to bounce off of.

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • How does the change in the sa/v ratio compare with the change in distance from the center of the cell to the nearest face?
    6·1 answer
  • Which of these is an example of interactions between the atmosphere and biosphere?
    9·2 answers
  • What is the relationship between a planet's position in the solar system and the length of that planet's year?
    6·1 answer
  • What does it signify if point 2 shifts down and to the left?
    15·1 answer
  • After a 50-kg person steps from a boat onto the shore, the boat moves away with a speed of 0.70 m/s with respect to the shore. I
    13·2 answers
  • Which type of mass movement makes a pattern of wrinkles, or terraces, on hillsides ?
    7·2 answers
  • I will give you branilest
    15·1 answer
  • A home run just clears a fence 105 m from home plate. The fence is 4.00 m higher than the height at which the batter struck the
    8·1 answer
  • State clearly how the pith ball electroscope may be used to test for the kind of charge on a body
    15·1 answer
  • Please Help Me!!!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!