The correct option is D.
According to special relativity, in no frame of reference does light in a vacuum travel at less than the speed of light, the speed of light in a vacuum is the same for any inertial reference frame.This fact remain valid no matter the speed of a light source relative to another observer.
Answer:
The gravitational attraction between the sun earth and moon
Answer:
F = 0
Explanation:
Newton's second law is
F = ma
As in this case the two blocks move with constant speed, it implies that the acceleration is zero, therefore the force applied to the system is zero
F = 0
Answer:
Momentum = 1.534 kgm/s
Explanation:
Using the equations of motion, we can obtain the velocity of the ball as it hits the ground.
g = 9.8 m/s²
y = 12 m
u = initial velocity = 0 m/s, since the ball was released from rest
v = final velocity befor the ball hits the ground.
v² = u² + 2ay
v² = 0 + 2×9.8×12 = 235.2
v = 15.34 m/s
The momentum at any point is given as mass × velocity at that point
Mass = 100 g = 0.1 kg, velocity = 15.34 m/s
Momentum = 0.1 × 15.34 = 1.534 kgm/s